[image:]

 This class is thread-safe: All mutative operations (add, set, and remove) are atomic
 they either succeed completely, or they fail completely.

 Java Collections with Atomic Mutative Operations

 CopyOnWriteArrayList:
 All mutative operations are atomic.
 Suitable for scenarios with more reads than writes.

 ConcurrentHashMap:
 Supports atomic operations like put, remove, and replace.
 Optimized for concurrent access with high concurrency.

 ConcurrentLinkedQueue:
 Operations like offer, poll, and remove are atomic.
 Designed for concurrent access.

 ConcurrentSkipListMap:
 Operations such as put, remove, and replace are atomic.
 Sorted map suitable for concurrent access.

 ConcurrentSkipListSet:
 Operations such as add, remove, and replace are atomic.
 Sorted set suitable for concurrent access.

https://raw.githubusercontent.com/vsaravanan/java22/master/src/main/java/com/saravanjs/java22/console/collection/CopyOnWriteArrayListExample.java

public class CopyOnWriteArrayListExample {
 public static void main(String[] args) {
 List<String> list = new CopyOnWriteArrayList<>();

 // Adding elements
 list.add("A");
 list.add("B");
 list.add("C");

 System.out.println("Initial list: " + list);

 // Iterate over the list
 for (String item : list) {
 System.out.println("Item: " + item);
 // Modifying the list during iteration
 list.add("D");
 }

 System.out.println("Final list: " + list);
 }
}

Initial list: [A, B, C]
Item: A
Item: B
Item: C
Final list: [A, B, C, D, D, D]

public class CopyOnWriteArrayListExample {

https://raw.githubusercontent.com/vsaravanan/java22/master/src/main/java/console/collection/CopyOnWriteArrayListExample2.java

 public static void main(String[] args) throws InterruptedException {

 List<String> copyOnWriteList = new CopyOnWriteArrayList<>();

 Runnable myTask = new Runnable() {
 public void run() {
 for (String name : copyOnWriteList) {
 System.out.println("Read: " + name);
 }
 }
 };

 copyOnWriteList.add("Alice");
 copyOnWriteList.add("Bob");
 copyOnWriteList.add("Charlie");

 // Create a thread for reading
 Thread readerThread = new Thread(myTask);

 // Create a thread for writing
 Thread writerThread = new Thread(() -> {
 copyOnWriteList.add("David");
 copyOnWriteList.remove("Alice");
 });

 readerThread.start();
 writerThread.start();

 Thread.sleep(1000);

 Thread readerThread2 = new Thread(myTask);
 readerThread2.start();

 }

}

Read: Alice
Read: Bob
Read: Charlie
...
Read: Bob
Read: Charlie
Read: David

image1.png
CopyOnWriteArrayList in Java

*CopyOnWriteArrayList™ is a thread-safe variant of ~ArrayList™ in Java where all mutative operations
(such as add, set, and remove) are implemented by making a fresh copy of the underlying array. This

class is part of the ~java.util.concurrent™ package and is particularly useful in scenarios where

reads are more frequent than writes.

Key Characteristics

¢ Thread Safety: Safe for concurrent use by multiple threads.

e Snapshot Iterators: Iterators do not reflect modifications made to the list after the iterator was

created.

e Performance: Read operations (e.g., “get", “iterator™, “size") are usually faster than write

operations (e.g., “add", “set”, “remove"), as the latter involve copying the entire array.

