
The Decorator Pattern is a structural design pattern that allows behavior to be added to an individual object,
either statically or dynamically, without affecting the behavior of other objects from the same class.
It provides a flexible alternative to subclassing for extending functionality.
The Decorator Pattern involves wrapping the original object with one or more decorator objects that add the desired behavior.

Let's say you have a Beverage class and you want to add optional toppings
(such as whipped cream or chocolate syrup) to a beverage without changing the original class.

Using the Decorator Pattern, you can achieve the following benefits:

Open/Closed Principle (OCP): You can add new toppings without modifying the existing code, adhering to the OCP.
Single Responsibility Principle (SRP): The Beverage class focuses on its core responsibility, and the decorators handle the additional behavior.
Flexibility: You can easily add or remove toppings dynamically without affecting the original object.
Extensibility: You can introduce new toppings by creating new decorator classes, promoting code reusability.

// Step 1: Component interface
interface Topping {
 String getDescription();
}

class Beverage implements Topping {
 private String description = "Beverage";

 public String getDescription() {
 return description;
 }
}

class WhippedCream implements Topping {
 private Topping beverage;

 public WhippedCream(Topping beverage) {
 this.beverage = beverage;
 }

 public String getDescription() {
 return beverage.getDescription() + ", Whipped Cream";
 }
}

class ChocolateSyrup implements Topping {
 private Topping beverage;

 public ChocolateSyrup(Topping beverage) {
 this.beverage = beverage;
 }

 public String getDescription() {
 return beverage.getDescription() + ", Chocolate Syrup";
 }
}

public class Decorator {
 public static void main(String[] args) {
 Beverage beverage = new Beverage();
 System.out.println(beverage.getDescription());

 Topping beverageWithWhippedCream = new WhippedCream(beverage);
 System.out.println(beverageWithWhippedCream.getDescription());

 Topping beverageWithChocolateSyrup = new ChocolateSyrup(beverage);
 System.out.println(beverageWithChocolateSyrup.getDescription());
 }
}

Beverage
Beverage, Whipped Cream
Beverage, Chocolate Syrup

interface Car {
 public void assemble();
}

class BasicCar implements Car {

 @Override
 public void assemble() {
 System.out.print("Basic Car.");
 }

}

class CarDecorator implements Car {

 protected Car car;

 public CarDecorator(Car c) {
 this.car = c;
 }

 @Override
 public void assemble() {
 this.car.assemble();
 }

}

class SportsCar extends CarDecorator {

 public SportsCar(Car c) {
 super(c);
 }

 @Override
 public void assemble() {
 super.assemble();
 System.out.print(" Adding features of Sports Car.");
 }
}

class LuxuryCar extends CarDecorator {

 public LuxuryCar(Car c) {
 super(c);
 }

 @Override
 public void assemble() {
 super.assemble();
 System.out.print(" Adding features of Luxury Car.");
 }
}

public class CarDecoratorPattern {
 public static void main(String[] args) {
 Car sportsCar = new SportsCar(new BasicCar());
 sportsCar.assemble();
 System.out.println("\n*****");

 Car sportsLuxuryCar = new SportsCar(new LuxuryCar(new BasicCar()));
 sportsLuxuryCar.assemble();
 }
}

Basic Car. Adding features of Sports Car.

Basic Car. Adding features of Luxury Car. Adding features of Sports Car.

[image: decorator design pattern, decorator design pattern in java]
[image: decorator pattern, decorator design pattern, decorator pattern java]
image1.png
pmintied}

Ssponacer

phetied]

image2.png
Basic Car

-

——

