

Factory Method Design Pattern

· Product (Pizza): Is an interface or an abstract class whose subclasses are instantiated by the factory method.
· ConcreteProduct (CheesePizza, PepperoniPizza, and VeggiePizza): Are the concrete subclasses that implement/extend Product. The factory method instantiates these subclasses.
· Creator (BasePizzaFactory): Is an interface or an abstract class that declares the factory method, which returns an object of type Product.
· ConcreteCreator (PizzaFactory): Is a concrete class that implements the factory method to create and return a ConcreteProduct to Client.
· Client: Asks the Creator for a Product.
A Client that requires a ConcreteProduct does not create any object but instead asks the Creator for it. The ConcreteCreator implements the factory method to create the object transparently from the Client. As a result, the Client is not required to be aware of any ConcreteProduct and how they are created. This approach advocates the Object Oriented Programming principle “Program to an interface, not an implementation“, which leads to polymorphism, a key feature of object-oriented programming. In addition, as object creation is centralized in the ConcreteCreator, any changes made to a Product or any ConcreteProduct does not affect the Client.

Spring uses this technique at the root of its Dependency Injection (DI) framework.
Fundamentally, Spring treats a bean container as a factory that produces beans.
public interface BeanFactory {
getBean(Class<T> requiredType);
getBean(Class<T> requiredType, Object... args);
getBean(String name); // ...]

java - Implement a simple factory pattern with Spring 3 annotations - Stack Overflow
public interface MyService {
 String getType();
 void checkStatus();
}

@Component
public class MyServiceOne implements MyService {
 @Override
 public String getType() {
 return "one";
 }

 @Override
 public void checkStatus() {
 // Your code
 }
}

@Component
public class MyServiceTwo implements MyService {
 @Override
 public String getType() {
 return "two";
 }

 @Override
 public void checkStatus() {
 // Your code
 }
}

@Component
public class MyServiceThree implements MyService {
 @Override
 public String getType() {
 return "three";
 }

 @Override
 public void checkStatus() {
 // Your code
 }
}

@Service
public class MyServiceFactory {

 @Autowired
 private List<MyService> services;

 private static final Map<String, MyService> myServiceCache = new HashMap<>();

 @PostConstruct
 public void initMyServiceCache() {
 for(MyService service : services) {
 myServiceCache.put(service.getType(), service);
 }
 }

 public static MyService getService(String type) {
 MyService service = myServiceCache.get(type);
 if(service == null) throw new RuntimeException("Unknown service type: " + type);
 return service;
 }
}

