[image:]
[image:]

[image:]

public class TaskScheduling {

 public static int getMinTime(List<Integer> task_memory, List<Integer> task_type, int max_memory) {
 int minTime = 0;
 Map<Integer, Integer> typeToMemory = new HashMap<>();

 for (int i = 0; i < task_memory.size(); i++) {
 int memory = task_memory.get(i);
 int type = task_type.get(i);

 if (typeToMemory.containsKey(type)) {
 int totalMemory = typeToMemory.get(type) + memory;
 if (totalMemory <= max_memory) {
 typeToMemory.put(type, totalMemory);
 } else {
 minTime++; // Process the task separately
 typeToMemory.put(type, memory);
 }
 } else {
 typeToMemory.put(type, memory);
 minTime++; // Process the first task separately
 }
 }

 return minTime;
 }

 public static void main(String[] args) {
 List<Integer> task_memory = List.of(1, 2, 3, 4, 2);
 List<Integer> task_type = List.of(1, 2, 1, 2, 3);
 int max_memory = 4;
 System.out.println(getMinTime(task_memory, task_type, max_memory)); // Output: 4

 task_memory = List.of(20, 17, 18, 13, 11, 13, 19, 15, 13, 10, 13, 12, 11, 15, 19, 16, 10, 11, 14, 18, 19);
 task_type = List.of(20, 4, 3, 4, 1, 1, 3, 3, 4, 2, 2, 4, 3, 5, 1, 3, 4, 3, 2, 3, 1);
 max_memory = 213;
 System.out.println(getMinTime(task_memory, task_type, max_memory)); // Output: 12
 }
}

image1.png
2. Task Scheduling

Given an array task_memory of n positive integers representing the amount of memory
required to process each task, an array task_type of n positive integers representing the
type of each task, and an integer max_memory, find the minimum amount of time
required for the server to process all the tasks.

Each task takes 1 unit of time to process. The server can process at most two tasks in
parallel only if they are of the same type and together require no more than
max_memory units of memory.

Example
Suppose n =4, task_memory=1[7, 2, 3, 9], task_type=1[1, 2,1, 31, and max_memory = 10.

One efficient schedule is shown.

Within Can
Task | Task | Task Task Memory Max Process in
Pair 1 2 Type Requirement Memory Parallel

Same

Different

Tasks 0 and 2 are processed concurrently, but the other two must be processed
separately due to their memory requirements and because they are not the same type.
The minimum amount of time required to process all the tasks is 3 units.

Function Description
Complete the function getMinTime in the editor below.

getMinTime has the following parameter(s):
int task_memory[n]: the memory required by the tasks
int task_type[n]: the type of the tasks
int max_memory:the maximum total memory that can be allocated to the tasks

image2.png
Returns
int: the minimum time required to process all tasks

Constraints

e 1<n<2%10°
° 15/naxJﬂenmmys109
e 1 < task_memoryl[i] < max_memory

o 1< task_type[i]< 10°

v Sample Case 0

» Input Format For Custom Testing

Sample Input For Custom Testing

STDIN FUNCTION

5 > n=2>5

1 > task_memory = [1, 2, 3, 4, 2]
2

3

4

2

5 > n=2>5

1 > task_type = [1, 2, 1, 2, 3]
2

1

2

3

4 > max_memory = 4

Sample Output

4

image3.png
Explanation

The first and the third tasks are processed in parallel. The other three tasks need to
be processed individually. The second and fourth use too much memory together,
and the fifth is a unique type.

v Sample Case 1

Sample Input For Custom Testing

STDIN FUNCTION

3 > n=3

1 > task_memory = [1, 2, 5]
2

5

3 > n=3

1 > type = [1, 2, 3]

2

3

6 > max_memory = 6

Sample Output

3

Explanation
All the tasks are of different types and must be processed separately.

