	
https://howtodoinjava.com/hibernate/hibernate-one-to-many-mapping-using-annotations/
[image:]

[image:]
[image:]

[image:]

[image:]
[image:]

[image:]
How second level cache works
Lets write all the facts point by point:
1. Whenever hibernate session try to load an entity, the very first place it look for cached copy of entity in first level cache (associated with particular hibernate session).
2. If cached copy of entity is present in first level cache, it is returned as result of load method.
3. If there is no cached entity in first level cache, then second level cache is looked up for cached entity.
4. If second level cache has cached entity, it is returned as result of load method. But, before returning the entity, it is stored in first level cache also so that next invocation to load method for entity will return the entity from first level cache itself, and there will not be need to go to second level cache again.
5. If entity is not found in first level cache and second level cache also, then database query is executed and entity is stored in both cache levels, before returning as response of load() method.
6. Second level cache validate itself for modified entities, if modification has been done through hibernate session APIs.
7. If some user or process make changes directly in database, the there is no way that second level cache update itself until “timeToLiveSeconds” duration has passed for that cache region. In this case, it is good idea to invalidate whole cache and let hibernate build its cache once again. You can use below code snippet to invalidate whole hibernate second level cache.
For both options, caching strategy can be of following types:
· none : No caching will happen.
· read-only : If your application needs to read, but not modify, instances of a persistent class, a read-only cache can be used.
· read-write : If the application needs to update data, a read-write cache might be appropriate.
· nonstrict-read-write : If the application only occasionally needs to update data (i.e. if it is extremely unlikely that two transactions would try to update the same item simultaneously), and strict transaction isolation is not required, a nonstrict-read-write cache might be appropriate.
· transactional : The transactional cache strategy provides support for fully transactional cache providers such as JBoss TreeCache. Such a cache can only be used in a JTA environment and you must specify hibernate.transaction.manager_lookup_class.
4. HQL Named Parameters
[image:]
10. HQL Named Queries
[image:]
11. HQL – Native SQL
[image:]

Persistence LifeCycle States

[image:]
[image:]

 Removed Object

[image:]

image5.png
@Entity(name = "JoinTableEmployeeEntity")

@Table(name
@UniqueConstraint (columnNames
@UniqueConstraint (columnNames

Employee”, uniqueConstraints = {
"),
EMAIL") })

public class EmployeeEntity implements Serializable

{

private static final long serialVersionUID = -1798070786993154676L;

erd
@GeneratedValue(strategy = GenerationType.IDENTITY)
@Colunn(name = "ID", unique = true, nullable = false)

private Integer employeeld;

@Column(name = "EMAIL", unique = true, nullable = false, length = 100)
private String email;

@Column(name = "FIRST_NAME", unique
private String firstName;

false, nullable

false, length

100)

@Column(name = "LAST_NAME", unique = false, nullable = false, length = 100)
private String lastName;

@0neToMany (cascade=CascadeType .ALL)

@JoinTable(name="EMPLOYEE_ACCOUNT", joinColumns={@JoinColumn(name="EMPLOYEE_ID", referencedColumnName="
, inverseJoinColumns={@10inColumn(name="ACCOUNT_ID", referencedColumnName="TD")})

private Set<AccountEntity> accounts;

D")}

//Getters and setters

image6.png
@Entity(name = "JoinTableAccountEntity")
@Table(name = "ACCOUNT", uniqueConstraints = {
@UniqueConstraint(columnNames = "ID")})

public class AccountEntity implements Serializable

{

private static final long serialVersionUID = -6790693372846798580L;

erd
(@GeneratedValue(strategy = GenerationType.IDENTITY)
@Colunn(name = "ID", unique = true, nullable = false)

private Integer accountId;

@Column(name = "ACC_NUMBER", unique = true, nullable = false, length = 100)

private String accountNumber;

//Getters and setters

image7.png
« Fist level cache: This is enabled by default and works in session scope. Read more about hibernate first level cache.

« Second level cache: This is apart from first level cache which is available to be used globally in session factory scope.

image8.png
String hql = "from Product where price > :price”;
Query query = session.createQuery(hql);

query. setDouble("price”,25.0);

List results = query.list();

image9.png
@VamedQueries({
@NamedQuery (name = "supplier.findAll", query = "from Supplier
@NamedQuery (name = "supplier.findByNam
query = "from Supplier s where s.name=:name"),

N

Executing above named query is even simpler.

Query query = session.getNamedQuery("supplier.findAll");
List<Supplier> suppliers = query.list();

s")s

image10.png
String sql = "select avg(product.price) as avgPrice from Product product”;
SQLQuery query = session.createSQLQuery(sql);
query.addScalar("avgPrice” Hibernate .DOUBLE) ;

List results = query.list();

Abit more complicated than the previous example is the native SQL that returns a result set

String sql = "select {supplier.*} from Supplier supplier";
SQLQuery query = session.createSQLQuery(sql);
query.addEntity("supplier”, Supplier.class);

List results = query.list();

image11.png
Transient Object

Transient objects exist in heap memory. Hibernate does not manage transient objects or persist changes to transient objec

Transient Object
POJO

Client

Transient objects are independent of Hibernate

image12.png
Persistent Object

Persistent objects exist in the database, and Hibernate manages the persistence for persistent objects.

Persistent Object
POJO |«—>| Session

Client

Persistent objects are maintained by Hibernate

If fields or properties change on a persistent object, Hibernate will keep the database representation up to date when the application m

Detached Object

Detached objects have a representation in the database, but changes to the object will not be reflected in the database, and vice-versa.

and the database is shown in image below.

Detached Object
POJO

Client

Detached objects exist in the database but are not maintained by Hibernate

image13.png
1. CascadeType.PERSIST : cascade type presist means that save() or persist() operations cascade to related entities.

2. CascadeType.MERGE : cascade type merge means that related entities are merged when the owning entity is merged.

3. CascadeType.REFRESH : cascade type refresh does the same thing for the refresh() operation.

4, CascadeType.REMOVE : cascade type remove removes all related entities association with this setting when the owning entity is deleted.
5. CascadeType.DETACH : cascade type detach detaches all related entities if a “manual detach” occurs.

6. CascadeType.ALL : cascade type all is shorthand for all of the above cascade operations.

image1.png
D INT(11)

© employee_ID INT(11)

image2.png
@Entity(name = "ForeignKeyAssoEntity")

@Table(name = "Employee”, uniqueConstraints = {
@UniqueConstraint(columnNames = "ID"),
@UniqueConstraint(columnNames = "EMATL") })

public class EmployeeEntity implements Serializable {

private static final long serialVersionUID = -1798070786993154676L;

erd
@GeneratedValue(strategy = GenerationType.IDENTITY)
@Column(name = "ID", unique = true, nullable = false)

private Integer employeeld;

@Column(name = "EMAIL", unique = true, nullable = false, length = 100)
private String email;

@Column(name = "FIRST_NAME", unique = false, nullable = false, length = 100)
private String firstName;

@Column(name = "LAST_NAME", unique = false, nullable = false, length = 100)
private String lastName;

@0neToMany (cascade=CascadeType .ALL)
@J0inColumn(name="ENPLOYEE_ID")

private Set<AccountEntity> accounts;

//Getters and setters

image3.png
@Entity(name = "ForeignKeyAssoAccountEntity")
@Table(name = "ACCOUNT", uniqueConstraints = {
@UniqueConstraint(columnNames = "ID")})

public class AccountEntity implements Serializable

{
private static final long serialVersionUID = -6790693372846798580L;
erd
@GeneratedValue(strategy = GenerationType.IDENTITY)
@Column(name = "ID", unique = true, nullable = false)

private Integer accountId;

@Column(name = "ACC_NUMBER", unique = true, nullable = false, length = 100)

private String accountNumber;

@ManyToOne
private EmployeeEntity employee;

//Getters and setters

image4.png
m m T INT(11)

D INT(an) EMPLOYEE_ID INT(11) EMALL VARCHAR(100)
9 AGC_NUMBER VARGHAR(100) ¥ ACCOUNT _ID INT(11) © FIRST_NAME VARCHAR(100)

Indexes Indexes O LAST_NAME VARGHAR(100)

one To Many association in hibernate using join table

