- Java 8 -
Java 8 was a massive release and you can find a list of all features at the Oracle website. There’s two main feature sets I’d like to mention here, though:
Language Features: Lambdas etc.
Before Java 8, whenever you wanted to instantiate, for example, a new Runnable, you had to write an anonymous inner class like so:
	Runnable runnable = new Runnable(){
 @Override
 public void run(){
 System.out.println("Hello world !");
 }
 };

With lambdas, the same code looks like this:
	Runnable runnable = () -> System.out.println("Hello world two!");

You also got method references, repeating annotations, default methods for interfaces and a few other language features.
Collections & Streams
In Java 8 you also got functional-style operations for collections, also known as the Stream API. A quick example:
	List<String> list = Arrays.asList("franz", "ferdinand", "fiel", "vom", "pferd");

Now pre-Java 8 you basically had to write for-loops to do something with that list.
With the Streams API, you can do the following:
	list.stream()
 .filter(name -> name.startsWith("f"))
 .map(String::toUpperCase)
 .sorted()
 .forEach(System.out::println);

If you want more Java 8 practice
Obviously, I can only give a quick overview of each newly added Stream, Lambda or Optional method in Java 8 in the scope of this guide.
If you want a more detailed, thorough overview - including exercises - you can have a look at my Java 8 core features course.
- Java 9 -
Java 9 also was a fairly big release, with a couple of additions:
Collections
Collections got a couple of new helper methods, to easily construct Lists, Sets and Maps.
	List<String> list = List.of("one", "two", "three");
Set<String> set = Set.of("one", "two", "three");
Map<String, String> map = Map.of("foo", "one", "bar", "two");

Streams
Streams got a couple of additions, in the form of takeWhile,dropWhile,iterate methods.
	Stream<String> stream = Stream.iterate("", s -> s + "s")
 .takeWhile(s -> s.length() < 10);

Optionals
Optionals got the sorely missed ifPresentOrElse method.
	user.ifPresentOrElse(this::displayAccount, this::displayLogin);

Interfaces
Interfaces got private methods:
	public interface MyInterface {

 private static void myPrivateMethod(){
 System.out.println("Yay, I am private!");
 }
}

Other Language Features
And a couple of other improvements, like an improved try-with-resources statement or diamond operator extensions.
JShell
Finally, Java got a shell where you can try out simple commands and get immediate results.
	% jshell
| Welcome to JShell -- Version 9
| For an introduction type: /help intro

jshell> int x = 10
x ==> 10

HTTPClient
Java 9 brought the initial preview version of a new HttpClient. Up until then, Java’s built-in Http support was rather low-level, and you had to fall back on using third-party libraries like Apache HttpClient or OkHttp (which are great libraries, btw!).
With Java 9, Java got its own, modern client - although in preview mode, which means subject to change in later Java versions.
Project Jigsaw: Java Modules and Multi-Release Jar Files
Java 9 got the Jigsaw Module System, which somewhat resembles the good old OSGI specification. It is not in the scope of this guide to go into full detail on Jigsaw, but have a look at the previous links to learn more.
Multi-Release .jar files made it possible to have one .jar file which contains different classes for different JVM versions. So your program can behave differently/have different classes used when run on Java 8 vs. Java 10, for example.
If you want more Java 9 practice
Again, this is just a quick overview of Java 9 features and if you want more thorough explanations and exercises, have a look at the Java 9 core features course.
- Java 10 -
There have been a few changes to Java 10, like Garbage Collection etc. But the only real change you as a developer will likely see is the introduction of the "var"-keyword, also called local-variable type inference.
Local-Variable Type Inference: var-keyword
	// Pre-Java 10

String myName = "Marco";

// With Java 10

var myName = "Marco"

Feels Javascript-y, doesn’t it? It is still strongly typed, though, and only applies to variables inside methods (thanks, dpash, for pointing that out again).
- Java 11 -
Java 11 was also a somewhat smaller release, from a developer perspective.
Strings & Files
Strings and Files got a couple new methods (not all listed here):
	"Marco".isBlank();
"Mar\nco".lines();
"Marco ".strip();

Path path = Files.writeString(Files.createTempFile("helloworld", ".txt"), "Hi, my name is!");
String s = Files.readString(path);

Run Source Files
Starting with Java 10, you can run Java source files without having to compile them first. A step towards scripting.
	ubuntu@DESKTOP-168M0IF:~$ java MyScript.java

Local-Variable Type Inference (var) for lambda parameters
The header says it all:
	(var firstName, var lastName) -> firstName + lastName

HttpClient
The HttpClient from Java 9 in its final, non-preview version.
Other stuff
Flight Recorder, No-Op Garbage Collector, Nashorn-Javascript-Engine deprecated etc.
- Java 12 -
Java 12 got a couple new features and clean-ups, but the only ones worth mentioning here are Unicode 11 support and a preview of the new switch expression, which you will see covered in the next section.
- Java 13 -
You can find a complete feature list here, but essentially you are getting Unicode 12.1 support, as well as two new or improved preview features (subject to change in the future):
Switch Expression (Preview)
Switch expressions can now return a value. And you can use a lambda-style syntax for your expressions, without the fall-through/break issues:
Old switch statements looked like this:
	switch(status) {
 case SUBSCRIBER:
 // code block
 break;
 case FREE_TRIAL:
 // code block
 break;
 default:
 // code block
}

Whereas with Java 13, switch statements can look like this:
	boolean result = switch (status) {
 case SUBSCRIBER -> true;
 case FREE_TRIAL -> false;
 default -> throw new IllegalArgumentException("something is murky!");
};

Multiline Strings (Preview)
You can finally do this in Java:
	String htmlBeforeJava13 = "<html>\n" +
 " <body>\n" +
 " <p>Hello, world</p>\n" +
 " </body>\n" +
 "</html>\n";

String htmlWithJava13 = """
 <html>
 <body>
 <p>Hello, world</p>
 </body>
 </html>
 """;

- Java 14 -
Switch Expression (Standard)
The switch expressions that were preview in versions 12 and 13, are now standardized.
	int numLetters = switch (day) {
 case MONDAY, FRIDAY, SUNDAY -> 6;
 case TUESDAY -> 7;
 default -> {
 String s = day.toString();
 int result = s.length();
 yield result;
 }
};

Records (Preview)
There are now record classes, which help alleviate the pain of writing a lot of boilerplate with Java.
Have a look at this pre Java 14 class, which only contains data, (potentially) getters/setters, equals/hashcode, toString.
	final class Point {
 public final int x;
 public final int y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}
 // state-based implementations of equals, hashCode, toString
 // nothing else

With records, it can now be written like this:
	record Point(int x, int y) { }

Again, this is a preview feature and subject to change in future releases.
Helpful NullPointerExceptions
Finally NullPointerExceptions describe exactly which variable was null.
	author.age = 35;

Exception in thread "main" java.lang.NullPointerException:
 Cannot assign field "age" because "author" is null

Pattern Matching For InstanceOf (Preview)
Whereas previously you had to (cast) your objects inside an instanceof like this:
	if (obj instanceof String) {
 String s = (String) obj;
 // use s
}

You can now do this, effectively dropping the cast.
	if (obj instanceof String s) {
 System.out.println(s.contains("hello"));
}

Packaging Tool (Incubator)
There’s an incubating jpackage tool, which allows to package your Java application into platform-specific packages, including all necessary dependencies.
· Linux: deb and rpm
· macOS: pkg and dmg
· Windows: msi and exe
Garbage Collectors
The Concurrent Mark Sweep (CMS) Garbage Collector has been removed, and the experimental Z Garbage Collector has been added.
- Java 15 -
Text-Blocks / Multiline Strings
Introduced as an experimental feature in Java 13 (see above), multiline strings are now production-ready.
	String text = """
 Lorem ipsum dolor sit amet, consectetur adipiscing \
 elit, sed do eiusmod tempor incididunt ut labore \
 et do lore magna aliqua.\
 """;

Sealed Classes - Preview
If you ever wanted to have an even closer grip on who is allowed to subclass your classes, there’s now the sealed feature.
	public abstract sealed class Shape
 permits Circle, Rectangle, Square {...}

This means that while the class is public, the only classes allowed to subclass Shape are Circle, Rectangle and Square.
Records & Pattern Matching
The Records and Pattern Matching features from Java 14 (see above), are still in preview and not yet finalized.
Nashorn JavaScript Engine
After having been deprecated in Java 11, the Nashorn Javascript Engine was now finally removed in JDK 15.
ZGC: Production Ready
The Z Garbage Collector is not marked experimental anymore. It’s now production-ready.
- Java 16 -
Pattern Matching for instanceof
Instead of:
	if (obj instanceof String) {
 String s = (String) obj;
 // e.g. s.substring(1)
}

You can now do this:
	if (obj instanceof String s) {
 // Let pattern matching do the work!
 // ... s.substring(1)
}

Unix-Domain Socket Channels
You can now connect to Unix domain sockets (also supported by macOS and Windows (10+).
	socket.connect(UnixDomainSocketAddress.of(
 "/var/run/postgresql/.s.PGSQL.5432"));

Foreign Linker API - Preview
A planned replacement for JNI (Java Native Interface), allowing you to bind to native libraries (think C).
Records & Pattern Matching
Both features are now production-ready, and not marked in preview anymore.
Sealed Classes
Sealed Classes (from Java 15, see above) are still in preview.
- Java 17 -
Java 17 is the new long-term support (LTS) release of Java, after Java 11.
Pattern Matching for switch (Preview)
Already available in many other languages:
	public String test(Object obj) {
 return switch(obj) {
 case Integer i -> "An integer";
 case String s -> "A string";
 case Cat c -> "A Cat";
 default -> "I don't know what it is";
 };
}

Now you can pass Objects to switch functions and check for a particular type.
Sealed Classes (Finalized)
A feature that was delivered in Java 15 as a preview is now finalized.
Recap: If you ever wanted to have an even closer grip on who is allowed to subclass your classes, there’s now the sealed feature.
	public abstract sealed class Shape
 permits Circle, Rectangle, Square {...}

This means that while the class is public, the only classes allowed to subclass Shape are Circle, Rectangle and Square.
Foreign Function & Memory API (Incubator)
A replacement for the Java Native Interface (JNI). Allows you to call native functions and access memory outside the JVM. Think C calls for now, but with plans for supporting additional languages (like C++, Fortran) over time.
Deprecating the Security Manager
Since Java 1.0, there had been a Security Manager. It’s now deprecated and will be removed in a future version.
- Java 18 -
UTF-8 by Default
If you tried, e.g. reading in files without specifying an explicit character ending, the operating system encoding was used in previous Java versions (e.g. UTF-8 on Linux and macOS, and Windows-1252 on Windows). With Java 18 this changed to UTF-8 by default.
Simple Web Server
Java 18 now comes with a rudimentary HTTP server, that you can start with:
	jwebserver

Learn more about its features here.
Other Not-So-Exciting-Stuff / Incubating Features
For a full list and overview, check out this article.
- Java 19 -
Java 19 added a couple of exciting features, like Virtual Threads and the new Foreign Function & Memory API, as well as Structured Concurrency and the Vector API - but they are all in preview mode, thus subject to change across the next releases.
If you want to read up on these features and what’s to come, check out this article.
- Java 20 -
Apart from some smaller features, Java 20 mainly iterated on previously introduced preview features: Scope Values, Record Patterns, Pattern Matching for switch, Foreign Function & Memory API, Virtual Threads & Structured Concurrency. All of them are work-in-progress, i.e. haven’t been finalized yet.
If you want to read up on these features and what’s to come, check out this article.

public class MethodReference {
 List<String> withoutMethodReference =
 cars.stream().map(car -> car.toString())
 .collect(Collectors.toList());
}
public class MethodReference {
 List<String> methodReference = cars.stream().map(Car::toString)
 .collect(Collectors.toList());
}
EXAMPLE FOR DEFAULT METHOD

interface Vehicle {
 // Abstract method
 void move();

 // Default method
 default void stop() {
 System.out.println("Vehicle is stopping...");
 }
}

// Implement the interface
class Car implements Vehicle {
 // Implement the abstract method
 @Override
 public void move() {
 System.out.println("Car is moving...");
 }

 // No need to implement the default method if not required
}

// Implement another class with different behavior for the default method
class Bicycle implements Vehicle {
 // Implement the abstract method
 @Override
 public void move() {
 System.out.println("Bicycle is moving...");
 }

 // Override the default method
 @Override
 public void stop() {
 System.out.println("Bicycle is stopping...");
 }
}

public class DefaultMethod {
 public static void main(String[] args) {
 // Create instances of Car and Bicycle
 Car car = new Car();
 Bicycle bicycle = new Bicycle();

 // Call methods
 car.move(); // Output: Car is moving...
 car.stop(); // Output: Vehicle is stopping...

 bicycle.move(); // Output: Bicycle is moving...
 bicycle.stop(); // Output: Bicycle is stopping...
 }
}

