[image: ]
[image: ]
[image: ]
[image: ]
[image: ]



image1.png
1. REQUIRED: This is the default propagation type. If a transaction context exists, the method will
execute within that context. If no transaction context exists, a new transaction will be started for
the method. This is the most commonly used propagation type and ensures that the method
always executes within a transaction.

2. REQUIRES_NEW: This propagation type always starts a new transaction, suspending the
current transaction context if one exists. The method executes within its own transaction context.
If an existing transaction is suspended, it will be resumed once the method completes.

3. SUPPORTS: This propagation type supports execution within a transaction conte|xt if one
exists but does not start a new transaction if none exists. The method will execute without a
transaction if called outside of a transaction context.

4. MANDATORY: This propagation type mandates the existence of a transaction context. If no
transaction context exists when the method is called, an exception is thrown. This propagation
type is useful when a method must be executed within a transaction context.

5. NOT_SUPPORTED: This propagation type executes the method without a transaction context.
If a transaction context exists when the method is called, it will be suspended until the method
completes.

6. NEVER: This propagation type specifies that the method should not execute within a
transaction context. If a transaction context exists when the method is called, an exception is
thrown.

7. NESTED: This propagation type allows for nested transactions within an existing transaction.
The method executes within a nested tran {, .ion if an existing transaction context exists. If no

transaction context exists, this behaves the same as "REQUIRED .




image2.png
Table 1. Mapping of JDBC transaction isolation levels to Derby isolation levels

Isolation Levels for JDBC

Isolation Levels for SQL

Connection. TRANSACTION READ UNCOMMITTED (ANSI level 0)

UR, DIRTY READ, READ UNCOMMITTED

Connection. TRANSACTION READ COMMITTED (ANSI level 1)

CS, CURSOR STABILITY, READ COMMITTED

Connection. TRANSACTION REPEATABLE READ (ANSI level 2)

RS

Connection. TRANSACTION SERIALIZABLE (ANSI level 3)

RR, REPEATABLE READ, SERIALIZABLE





image3.png
Table 3. When transaction anomalies are possible

Isolation Level

Table-Level Locking

Row-Level Locking

T

RANSACTION_READ UNCOMMITTED

Dirty reads, nonrepeatable reads, and
phantom reads possible

Dirty reads, nonrepeatable reads, and
phantom reads possible

T

RANSACTION_READ COMMITTED

Nonrepeatable reads and phantom reads
possible

Nonrepeatable reads and phantom reads
possible

RANSACTION_REPEATABLE READ

Phantom reads not possible because entire
table is locked

Phantom reads possible

RANSACTION_SERIALIZABLE

None

None





image4.png
Table 2. Transaction anomalies

Anomaly Example

Dirty Reads Transaction A begins.

UPDATE employee SET salary = 31650

A dirty read happens when a transaction reads data that is being modified by another transaction that has not yet committed.
WHERE empno = '000090'

Transaction B begins.

SELECT * FROM employee

(Transaction B sees data updated by transaction A. Those updates have not yet been committed.)

Nonrepeatable Reads Transaction A begins.

SELECT * FROM employee

Nonrepeatable reads happen when a query returns data that would be different if the query were repeated within the same
WHERE empno = '000090'

transaction. Nonrepeatable reads can occur when other transactions are modifying data that a transaction is reading.

Transaction B begins.

UPDATE employee SET salary = 30100
WHERE empno = '000090'

(Transaction B updates rows viewed by transaction A before transaction A commits.) If Transaction A issues the same SELECT
statement, the results will be different.

Phantom Readls Transaction A begins.

SELECT * FROM employee

Records that appear in a set being read by another transaction. Phantom reads can occur when other transactions insert rows that
WHERE salary > 30000

would satisfy the WHERE clause of another transaction's statement.

Transaction B begins.

INSERT INTO employee

(empno, firstnme, midinit,
lastname, job,

salary) VALUES ('00@8350', 'NICK',
'A','GREEN', 'LEGAL COUNSEL',35000)

Transaction B inserts a row that would satisfy the query in Transaction A if it were issued again.





image5.png
@Transactional(propagation = Propagation.REQUIRED)
public void requiredExample(String user) {

/1




