
public class FixedThreadPoolExample {
 public static void main(String[] args) {
 // Create a FixedThreadPool with 5 threads
 ExecutorService executor = Executors.newFixedThreadPool(5);

 // Submit tasks to the executor
 for (int i = 0; i < 10; i++) {
 final int taskNumber = i;
 executor.submit(() -> {
 System.out.println("Task " + taskNumber + " executed by thread: " + Thread.currentThread().getName());
 });
 }

 // Shutdown the executor
 executor.shutdown();
 }
}

Task 1 executed by thread: pool-1-thread-2
Task 2 executed by thread: pool-1-thread-3
Task 0 executed by thread: pool-1-thread-1
Task 3 executed by thread: pool-1-thread-4
Task 4 executed by thread: pool-1-thread-5
Task 8 executed by thread: pool-1-thread-3

public class CachedThreadPoolExample {
 public static void main(String[] args) throws InterruptedException {
 // Create a CachedThreadPool
 ExecutorService executor = Executors.newCachedThreadPool();

 // Submit tasks to the executor
 for (int i = 0; i < 100; i++) {
 executor.submit(() -> {
 System.out.println("Task executed by thread: " + " -> " + Thread.currentThread().getName());
 });
 }

 // Shutdown the executor service when tasks are completed
 executor.shutdown();
 }
}

Task executed by thread: -> pool-1-thread-1
Task executed by thread: -> pool-1-thread-5
Task executed by thread: -> pool-1-thread-2
Task executed by thread: -> pool-1-thread-4
Task executed by thread: -> pool-1-thread-3

public class ScheduledThreadPoolExample {
 public static void main(String[] args) throws InterruptedException {
 // Create a ScheduledThreadPoolExecutor with 5 core threads
 try (ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(5)) {

 // Schedule a task to run repeatedly every 2 seconds, starting after an initial delay of 3 seconds
 scheduledThreadPool.scheduleAtFixedRate(() -> {
 System.out.println("Task executed every 2 seconds");
 }, 3, 2, TimeUnit.SECONDS);

// Schedule a task to run after a delay of 1 second
 scheduledThreadPool.schedule(() -> {
 System.out.println("Task executed after 1 second");
 }, 1, TimeUnit.SECONDS);

// Thread.sleep(10000);
// scheduledThreadPool.shutdown();
 try {
 scheduledThreadPool.awaitTermination(5, TimeUnit.SECONDS);
 // Shutdown the executor after 10 seconds
 scheduledThreadPool.shutdown();
 } catch (InterruptedException e) {

 e.printStackTrace();
 }
 }
 }
}

Task executed after 1 second
Task executed every 2 seconds
Task executed every 2 seconds

public class SemaphoreExample {
 private static final int THREAD_COUNT = 5;

 public static void main(String[] args) {
 // Create a Semaphore with permits for THREAD_COUNT concurrent threads
 Semaphore semaphore = new Semaphore(THREAD_COUNT);

 // Create and start multiple threads
 for (int i = 0; i < THREAD_COUNT * 2; i++) {
 Thread thread = new Thread(new Worker(semaphore));
 thread.start();
 }
 }

 static class Worker implements Runnable {
 private final Semaphore semaphore;

 Worker(Semaphore semaphore) {
 this.semaphore = semaphore;
 }

 @Override
 public void run() {
 try {
 // Acquire a permit from the semaphore
 semaphore.acquire();
 System.out.println(Thread.currentThread().getName() + " has acquired a permit.");

 // Simulate some work
 Thread.sleep(1000);

 // Release the permit back to the semaphore
 semaphore.release();
 System.out.println(Thread.currentThread().getName() + " has released the permit.");
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Thread-2 has acquired a permit.
Thread-3 has acquired a permit.
Thread-1 has acquired a permit.
Thread-5 has acquired a permit.
Thread-0 has released the permit.
Thread-6 has acquired a permit.
Thread-1 has released the permit.
Thread-4 has released the permit.

