
How would you handle inter-service communication in a
microservices architecture using Spring Boot?

For simple, direct communication, I would use RestTemplate, which allows services to send requests

and receive responses like a two-way conversation.

For more complex interactions, especially when dealing with multiple services, I would choose Feign

Client. Feign Client simplifies declaring and making web service clients, making the code cleaner and the

process more efficient.

For asynchronous communication, where immediate responses aren't necessary, I would use message

brokers like RabbitMQ or Kafka. These act like community boards, where services can post messages

that other services can read and act upon later. This approach ensures a robust, flexible communication

system between microservices.
By GenZ Career on YouTube

Can you explain the caching mechanisms available in Spring
Boot?

Caching is like having a memory box where you can store things we use frequently, so we don't have to

go through the whole process of getting them each time. It makes our application faster and more

efficient.

There is a Spring Cache Abstraction in Spring Boot and it is like a smart memory layer for our

application. It's designed to save time and resources by remembering the results of expensive

operations, like fetching data from a database. When we ask for the same data again, Spring Cache

gives it to us quickly from its memory, instead of doing the whole operation again.

By GenZ Career on YouTube

How would you implement caching in a Spring Boot application?

To implement caching in a Spring Boot application, first add a caching dependency, like spring-boot-

starter-cache.

Then, enable caching in the application by adding @EnableCaching annotation to the main class.

Define cacheable operations using @Cacheable on methods whose results we want to cache. Optionally,

customize cache behavior with annotations like @CacheEvict and @CachePut.

Choose a cache provider (like EhCache or Hazelcast) or use the default concurrent map-based cache

provided by Spring.

By GenZ Career on YouTube

Your Spring Boot application is experiencing performance issues
under high load. What are the steps you would take to identify
and address the performance?

First, I would identify the specific performance issues using monitoring tools like Spring Boot Actuator

or Splunk.

I would also analyze application logs and metrics to spot any patterns or errors, especially under high

load.

Then, I would start a performance tests to replicate the issue and use a profiler for code-level analysis.

After getting findings, I might optimize the database, implement caching, or use scaling options. It's

also crucial to continuously monitor the application to prevent future issues.

By GenZ Career on YouTube

What are the best practices for versioning REST APIs in a
Spring Boot application

For versioning REST APIs in Spring Boot, best practices include:

• URL Versioning: Include the version number in the URL, like /api/v1/products.

• Header Versioning: Use a custom header to specify the version.

• Media Type Versioning: Version through content negotiation using the Accept header.

• Parameter Versioning: Specify the version as a request parameter.

By GenZ Career on YouTube

How does Spring Boot simplify the data access layer
implementation?

Spring Boot greatly eases the implementation of the data access layer by offering several streamlined
features.

First, it auto-configures essential settings like data source and JPA/Hibernate based on the libraries
present in the classpath, reducing manual setup. It also provides built-in repository support, such as
JpaRepository, enabling easy CRUD operations without the need for boilerplate code.

Additionally, Spring Boot can automatically initialize database schemas and seed data using scripts. It
integrates smoothly with various databases and ORM technologies and translates SQL exceptions into
Spring’s data access exceptions, providing a consistent and simplified error handling mechanism. These
features collectively make data access layer development more efficient and developer-friendly.

By GenZ Career on YouTube

What are conditional annotations and explain the purpose of
conditional annotations in Spring Boot?

Conditional annotations in Spring Boot help us create beans or configurations only if certain

conditions are met.

It's like setting rules: "If this condition is true, then do this." A common example is

@ConditionalOnClass, which creates a bean only if a specific class is present.

This makes our application flexible and adaptable to different environments without changing the

code, enhancing its modularity and efficiency.

By GenZ Career on YouTube

Explain the role of @EnableAutoConfiguration annotation in a
Spring Boot application. How does Spring Boot achieve auto-
configuration internally?"

@EnableAutoConfiguration in Spring Boot tells the framework to automatically set up the application

based on its dependencies.

Internally, Spring Boot uses Condition Evaluation, examining the classpath, existing beans, and

properties.

It depends on @Conditional annotations (like @ConditionalOnClass) in its auto-configuration classes to

determine what to configure. This smart setup tailors the configuration to our needs, simplifying and

speeding up the development process.

By GenZ Career on YouTube

What are Spring Boot Actuator endpoints?

Spring Boot Actuator is like a toolbox for monitoring and managing our Spring Boot application. It

gives us endpoints (think of them as special URLs) where we can check health, view

configurations, gather metrics, and more. It's super useful for keeping an eye on how your app is

doing.

In a production environment (which is like the real world where your app is being used by people),

these endpoints can reveal sensitive information about your application. Imagine leaving our diary

open in a public place – we wouldn't want that, right? Similarly, we don't want just anyone peeking

into the internals of your application.

By GenZ Career on YouTube

How can we secure the actuator endpoints?

Limit Exposure: By default, not all actuator endpoints are exposed. We can control which ones are

available over the web. It's like choosing what parts of your diary are okay to share.

Use Spring Security: We can configure Spring Security to require authentication for accessing

actuator endpoints.

Use HTTPS instead of HTTP.

Actuator Role: Create a specific role, like ACTUATOR_ADMIN, and assign it to users who should

have access. This is like giving a key to only trusted people.

By GenZ Career on YouTube

What strategies would you use to optimize the performance
of a Spring Boot application?

Let’s say my Spring Boot application is taking too long to respond to user requests. I could:

• Implement caching for frequently accessed data.

• Optimize database queries to reduce the load on the database.

• Use asynchronous methods for operations like sending emails.

• Load Balancer if traffic is high

• Optimize the time complexity of the code

• Use webFlux to handle a large number of concurrent connections.

By GenZ Career on YouTube

How can we handle multiple beans of the same type?

To handle multiple beans of the same type in Spring, we can use @Qualifier annotation. This lets

us specify which bean to inject when there are multiple candidates.

For example, if there are two beans of type DataSource, we can give each a name and use

@Qualifier("beanName") to tell Spring which one to use.

Another way is to use @Primary on one of the beans, marking it as the default choice when

injecting that type.

By GenZ Career on YouTube

What are some best practices for managing transactions in
Spring Boot applications?"

1. Use @Transactional

What It Is: @Transactional is an annotation in Spring Boot that we put on methods or classes. It tells Spring Boot,

"Hey, please handle this as a single transaction."

How to Use It: Put @Transactional on service methods where we perform database operations. If anything goes

wrong with this method, Spring Boot will automatically "roll back" the changes to avoid partial updates.

2. Keep Transactions at the Service Layer

Best Layer for Transactions: It's usually best to handle transactions in the service layer of our application. The

service layer is where we put business logic.

Why Here?: It's the sweet spot where we can access different parts of your application (like data access and

business logic) while keeping things organized.

By GenZ Career on YouTube

How do you approach testing in Spring Boot applications and

Testing in Spring Boot applications is like making sure everything in our newly built rocket works

perfectly before launching it into space. We want to be sure each part does its job correctly. In

Spring Boot, we have some great tools for this, including @SpringBootTest and @MockBean.

• Unit Testing: This is like checking each part of our rocket individually, like the engine, the

fuel tank, etc. We test small pieces of code, usually methods, in isolation.

• Integration Testing: Now, We are checking how different parts of our rocket work together.

In Spring Boot, this means testing how different components interact with each other and

with the Spring context.

By GenZ Career on YouTube

Discuss the use of @SpringBootTest and @MockBean
annotations?

@SpringBootTest

What It Is: @SpringBootTest is an annotation used for integration testing in Spring Boot. It says, "Start

up the Spring context when this test runs."

When to Use It: Use @SpringBootTest when we need to test how different parts of your application work

together. It's great for when we need the full behavior of your application.

@MockBean

What It Is: @MockBean is used to create a mock (a fake) version of a component or service. This is useful

when we want to test a part of your application without actually involving its dependencies.

When to Use It: Use @MockBean in tests where we need to isolate the component being tested. For

example, if We are testing a service that depends on a repository, we can mock the repository to control how

it behaves and test the service in isolation.

By GenZ Career on YouTube

What advantages does YAML offer over properties files in
Spring Boot? Are there limitations when using YAML for
configuration?

YAML offers several advantages over properties files in Spring Boot. It supports hierarchical

configurations, which are more readable and easier to manage, especially for complex structures.

YAML also allows comments, aiding documentation. However, YAML has limitations too. It's more

error-prone due to its sensitivity to spaces and indentation. Additionally, YAML is less familiar to

some developers compared to the straightforward key-value format of properties files.

While YAML is great for complex configurations and readability, these limitations are important

to consider when choosing the format for Spring Boot configuration.

By GenZ Career on YouTube

Explain how Spring Boot profiles work.

Spring Boot profiles are like having different settings for our app depending on the situation. It's like having

different playlists on our music app – one for working out, one for relaxing, and so on. Each playlist sets a

different mood, just like each profile in Spring Boot sets up a different environment for our app.

Profiles in Spring Boot allow us to separate parts of our application configuration and make it available only in

certain environments. For example, we might have one set of settings (a profile) for development, another for

testing, and yet another for production.

Why Use Profiles?

Using profiles helps keep your application flexible and maintainable. We can easily switch environments

without changing our code. It's like having different modes for different purposes, making sure our app

always behaves appropriately for its current environment.
By GenZ Career on YouTube

What is aspect-oriented programming in the spring
framework?

Aspect-Oriented Programming (AOP) is a programming approach that helps in separating concerns in your

program, especially those that cut across multiple parts of an application.

Our main program code focuses on the core functionality while the "aspects" take care of other common

tasks that need to happen in various places, like logging, security checks, or managing transactions.

For example, in a Java application, we might have methods where we want to log information every time

they're called or check that a user has the right permissions. Instead of putting this logging or security code

into every method, we can define it once in an "aspect" and then specify where and when this code should be

applied across our application. This keeps our main code cleaner and more focused on its primary tasks.

By GenZ Career on YouTube

What is Spring Cloud and how it is useful for building
microservices?

Spring Cloud is one of the components of the Spring framework, it helps manage microservices.

Imagine we are running an online store application, like a virtual mall, where different sections handle

different tasks. In this app, each store or section is a microservice. One section handles customer logins,

another manages the shopping cart, one takes care of processing payments, and the other lists all the

products.

Building and managing such an app can be complex because we need all these sections to work together

seamlessly. Customers should be able to log in, add items to their cart, pay for them, and browse products

without any problems. That’s where Spring Cloud comes into the picture. It helps microservices in connecting

the section, balancing the crowd, keeping the secret safe, etc., etc.

By GenZ Career on YouTube

How does Spring Boot make the decision on which server to
use?

Spring Boot decides which server to use based on the classpath dependencies.

If a specific server dependency, like Tomcat, Jetty, or Undertow, is present, Spring Boot auto-configures it

as the default server.

If no server dependency is found, Spring Boot defaults to Tomcat as it's included in spring-boot-starter-

web. This automatic server selection simplifies setup and configuration, allowing us to focus more on

developing the application rather than configuring server details.

By GenZ Career on YouTube

How to get the list of all the beans in your spring boot
application?

Step 1: First I would Autowire the ApplicationContext into the class where I want to list the beans.

Step 2: Then I would Use the getBeanDefinitionNames() method from the ApplicationContext to get

the list of beans

By GenZ Career on YouTube

Describe a Spring Boot project where you significantly
improved performance. What techniques did you use?

I improved a Spring Boot project's performance by optimizing database interactions with connection

pooling and caching by using EhCache.

I also enabled HTTP response compression and configured stateless sessions in Spring Security to

reduce data transfer and session overhead.

I significantly reduced response times by using Spring Boot's actuator for real-time monitoring and

adopting asynchronous processing for non-critical tasks. I increased the application's ability to handle

more concurrent users, enhancing overall efficiency.

By GenZ Career on YouTube

Explain the concept of Spring Boot's embedded servlet
containers.

Spring Boot has an embedded servlet container feature, which essentially means it has a web server

(like Tomcat, Jetty, or Undertow) built right into the application. This allows us to run our web

applications directly without setting up an external server.

It's a big time-saver for development and testing because we can just run our application from our

development environment or through a simple command.

This embedded approach simplifies deployment too, as our application becomes a standalone package

with everything needed to run it, and it will eliminate the need for separate web server configuration.

By GenZ Career on YouTube

How does Spring Boot make DI easier compared to traditional
Spring?

Spring Boot makes Dependency Injection (DI) easier compared to traditional Spring by auto-configuring
beans and reducing the need for explicit configuration. In traditional Spring, we had to define beans and
their dependencies in XML files or with annotations, which can be complex for large applications.

But in spring boot, we use Auto-Configuration and Component Scanning to automatically discover and
register beans based on the application's context and classpath. This means now we don't have to
manually wire up beans;

Spring Boot intelligently figures out what's needed and configures it for us. This auto-configuration
feature simplifies application setup and development, allowing us to focus more on writing business logic
rather than boilerplate configuration code.

By GenZ Career on YouTube

How does Spring Boot simplify the management of application
secrets and sensitive configurations, especially when deployed
in different environments?

Spring Boot helps manage application secrets by allowing configurations to be externalized and kept

separate from the code.

This means I can use properties files, YAML files, environment variables, and command-line arguments

to adjust settings for different environments like development, testing, and production. For sensitive

data, Spring Boot can integrate with systems like Spring Cloud Config Server or HashiCorp Vault, which

securely stores and provides access to secrets.

This setup simplifies managing sensitive configurations without hardcoding them, enhancing security and

flexibility across various deployment environments.

By GenZ Career on YouTube

Explain Spring Boot's approach to handling asynchronous
operations.

Spring Boot uses the @Async annotation to handle asynchronous operations. This lets us run tasks in the
background without waiting for them to be complete before moving on to the next line of code.

To make a method asynchronous, we just add @Async above its definition, and Spring takes care of
running it in a separate thread. This is handy for operations that are independent and can be run in
parallel, like sending emails or processing files, so the main flow of the application doesn't get blocked.

To work with async operations, we also need to enable it in the configuration by adding @EnableAsync to
one of the configuration classes.

By GenZ Career on YouTube

How can you enable and use asynchronous methods in a Spring
Boot application?

To enable and use asynchronous methods in a Spring Boot application:

• First, I would add the @EnableAsync annotation to one of my configuration classes. This enables Spring's
asynchronous method execution capability.

• Next, I would mark methods I want to run asynchronously with the @Async annotation. These methods can return
void or a Future type if I want to track the result.

• Finally, I would call these methods like any other method. Spring takes care of running them in separate threads,
allowing the calling thread to proceed without waiting for the task to finish.

Remember, for the @Async annotation to be effective, the method calls must be made from outside the class. If I call
an asynchronous method from within the same class, it won't execute asynchronously due to the way Spring proxying
works

By GenZ Career on YouTube

Describe how you would secure sensitive data in a Spring Boot
application that is accessed by multiple users with different
roles

To keep sensitive information safe in a Spring Boot app used by many people with different roles, I would do

a few things. First, I would make sure everyone who uses the app proves who they are through a login system.

Then, I'd use special settings to control what each person can see or do in the app based on their role like

some can see more sensitive stuff while others can’t. I'd also scramble any secret information stored in the

app or sent over the internet so that only the right people can understand it.

Plus, I'd keep passwords and other secret keys out of the code and in a safe place, making them easy to

change if needed. Lastly, I'd keep track of who looks at or changes the sensitive information, just to be

extra safe. This way, only the right people can get to the sensitive data, and it stays protected.

By GenZ Career on YouTube

You are creating an endpoint in a Spring Boot application that
allows users to upload files. Explain how you would handle the
file upload and where you would store the files.

To handle file uploads in a Spring Boot application,

I would use @PostMapping annotation to create an endpoint that listens for POST requests.

Then I would add a method that accepts MultipartFile as a parameter in the controller. This method

would handle the incoming file.

By GenZ Career on YouTube

Can you explain the difference between authentication and
authorization in Spring Security?

In Spring Security, authentication is verifying who I am, like showing an ID. It checks my identity using

methods like passwords or tokens.

Authorization decides what I'm allowed to do after I'm identified, like if I can access certain parts of

an app. It's about permissions.

So, authentication is about confirming my identity, and authorization is about my access rights based on

that identity.

By GenZ Career on YouTube

After successful registration, your Spring Boot application needs
to send a welcome email to the user. Describe how would you send
the emails to the registered users.

First, I would ensure the Spring Boot Starter Mail dependency is in my project's pom.xml.

Next in application.properties, I would set up my mail server details, like host, port, username,
and password.

Then I would write a service class that uses JavaMailSender to send emails. In this service, I
craft the welcome email content and use the send method to dispatch emails.

And finally, af
ter a user successfully registers, I would call my mail service from within the registration logic
to send the welcome email.

By GenZ Career on YouTube

What is Spring Boot CLI and how to execute the Spring Boot
project using boot CLI?

Spring Boot CLI (Command Line Interface) is a tool for running Spring Boot applications easily. It helps

to avoid boilerplate code and configuration.

To execute the spring boot project using boot CLI:

• First, install the CLI through a package manager or download it from the Spring website.

• Write the application code in a Groovy script, which allows using Spring Boot features without

detailed configuration.

• In the terminal, navigate to the script's directory and run spring run myApp.groovy, substituting

myApp.groovy with the script's filename.

By GenZ Career on YouTube

How Is Spring Security Implemented In A Spring Boot
Application?

To add the spring security in a spring boot application, we first need to include spring security starter

dependency in the POM file

Then, we create a configuration class extending WebSecurityConfigurerAdapter to customize security

settings, such as specifying secured endpoints and configuring the login and logout process. we also

implement the UserDetailsService interface to load user information, usually from a database, and use a

password encoder like BCryptPasswordEncoder for secure password storage.

We can secure specific endpoints using annotations like @PreAuthorize, based on roles or permissions.

This setup ensures that my Spring Boot application is secure, managing both authentication and

authorization effectively.
By GenZ Career on YouTube

How to Disable a Specific Auto-Configuration?

To disable a specific auto-configuration in a Spring Boot application, I use the exclude attribute of the
@SpringBootApplication annotation.

First, I find out which auto-configuration class I want to disable. For example, let's say I want to
disable the auto-configuration for DataSource.

Then, I update @SpringBootApplication with exclude keword as shown below in the code.

By GenZ Career on YouTube

Explain the difference between cache eviction and cache
expiration.

Cache eviction is when data is removed from the cache to free up space, based on a policy like

"least recently used."

Cache expiration is when data is removed because it's too old, based on a predetermined time-to-

live.

So, eviction manages cache size, while expiration ensures data freshness.

By GenZ Career on YouTube

If you had to scale a Spring Boot application to handle high
traffic, what strategies would you use?

To scale a Spring Boot application for high traffic, we can:

Add more app instances (horizontal scaling) and use a load balancer to spread out the traffic.

Break your app into microservices so each part can be scaled independently.

Use cloud services that can automatically adjust resources based on your app's needs.

Use caching to store frequently accessed data, reducing the need to fetch it from the database every time.

Implement an API Gateway to handle requests and take care of things like authentication.

By GenZ Career on YouTube

Describe how to implement security in a microservices
architecture using Spring Boot and Spring Security.

To secure microservices with Spring Boot and Spring Security, do the following:

Add Spring Security to each microservice for authentication and authorization.

Create a central authentication service that gives out tokens (like JWT) when users log in.

Ensure each microservice checks these tokens to let only allowed users in.

Use SSL/TLS for secure communication.

Implement an API Gateway to manage security checks and route requests. By GenZ Career on YouTube

In Spring Boot, how is session management configured and
handled, especially in distributed systems?

In Spring Boot for distributed systems, session management is done by storing session information in a

shared location using Spring Session.

This way, any server can access the session data, allowing users to stay logged in across different servers.

We set it up by adding Spring Session to our project and choosing where to store the sessions, like in a

database or cache.

This makes our app more scalable and keeps user sessions consistent.

By GenZ Career on YouTube

Imagine you are designing a Spring Boot application that
interfaces with multiple external APIs. How would you handle
API rate limits and failures?

To handle API rate limits and failures in a Spring Boot application, I would

• Use a circuit breaker to manage failures

• Implement rate limiting to avoid exceeding API limits

• Add a retry mechanism with exponential backoff for temporary issues

• Use caching to reduce the number of requests.

This approach helps keep the application reliable and efficient.

By GenZ Career on YouTube

How you would manage externalized configuration and secure
sensitive configuration properties in a microservices
architecture?

To handle these settings across microservices in a big project, I would use a tool called Spring Cloud Config.

It's like having a central folder where all settings are kept.

This folder can be on the web or my computer. There's a special app, called Config Server, that gives out

these settings to all the other small apps when they ask for it.

If there are any secret settings, like passwords, I would make sure they are scrambled up so no one can

easily see them. This way, all microservices can easily get updated settings they need to work right, and the

important stuff stays safe.

By GenZ Career on YouTube

Can we create a non-web application in Spring Boot?

Yes, we can make a non-web application with Spring Boot. Spring Boot isn't just for web projects. we can

use it for other types like running scripts or processing data.

If we don't add web parts to our project, it won't start a web server. Instead, we can use a feature in

Spring Boot to run our code right after the program starts.

This way, Spring Boot helps us build many different types of applications, not just websites.

By GenZ Career on YouTube

What does the @SpringBootApplication annotation do
internally?

@SpringBootApplication annotation is like a shortcut that combines three other annotations.

First, it uses @Configuration, telling Spring that this class has configurations and beans that Spring

should manage.

Then, it uses @EnableAutoConfiguration, which allows Spring Boot to automatically set up the

application based on the libraries on the classpath.

Lastly, it includes @ComponentScan, which tells Spring to look for other components, configurations,

and services in the current package, allowing it to find and register them.

By GenZ Career on YouTube

How does Spring Boot support internationalization (i18n)?

Spring Boot supports internationalization (i18n) by showing our application's text in different languages

by using property files.

We put these files in a folder named src/main/resources. Each file has a name like

messages_xx.properties, where xx stands for the language code. Spring Boot uses these files to pick

the right language based on the user's settings. We can set rules on how to choose the user's language

with something called LocaleResolver.

This way, our application can speak to users in their language, making it more user-friendly for people

from different parts of the world.

By GenZ Career on YouTube

What Is Spring Boot DevTools Used For?

Spring Boot DevTools is a tool that makes developing applications faster and easier. It automatically

restarts our application when we change code, so we can see updates immediately without restarting

manually.

It also refreshes our web browser automatically if we change things like HTML files. DevTools also

provides shortcuts for common tasks and helps with fixing problems by allowing remote debugging.

Basically, it's like having a helpful assistant that speeds up our work by taking care of repetitive tasks

and letting us focus on writing and improving our code.

By GenZ Career on YouTube

How can you mock external services in a Spring Boot test?

In Spring Boot tests, we can mock external services using the @MockBean annotation. This annotation

lets us create a mock (fake) version of an external service or repository inside our test environment.

When we use @MockBean, Spring Boot replaces the actual bean with the mock in the application

context.

Then, we can define how this mock should behave using mocking frameworks like Mockito, specifying

what data to return when certain methods are called. This approach is super helpful for testing our

application's logic without actually calling external services, making our tests faster and more reliable

since they don't depend on external systems being available or behaving consistently.

By GenZ Career on YouTube

How do you mock microservices during testing?

To mock microservices during tests, I use tools like WireMock or Mockito to pretend I am talking to
real services.

With these tools, I set up fake responses to our requests. So, if my app asks for something from
another service, the tool steps in and gives back what I told it to, just like if the real service had
answered.

This method is great for testing how our app works with other services without needing those services
to be actually running, making our tests quicker and more reliable.

By GenZ Career on YouTube

Explain the process of creating a Docker image for a Spring
Boot application.

To make a Docker image for a Spring Boot app, we start by writing a Dockerfile. This file tells

Docker how to build our app's image.

We mention which Java version to use, add our app's .jar file, and specify how to run our app.

After writing the Dockerfile, we run a command docker build -t myapp:latest . in the terminal.

This command tells Docker to create the image with everything our app needs to run. By doing

this, we can easily run our Spring Boot app anywhere Docker is available, making our app portable

and easy to deploy.

By GenZ Career on YouTube

Discuss the configuration of Spring Security to address
common security concerns.

To make my Spring Boot app secure, I'd set up a few things with Spring Security. First, I'd make sure

users are who they say they are by setting up a login system. This could be a simple username and

password form or using accounts from other services. Next, I'd control what parts of the app each

user can access, based on their role.

I'd also switch on HTTPS to keep data safe while it's being sent over the internet. Spring Security

helps stop common web attacks like CSRF by default, so I'd make sure that's turned on. Plus, I'd

manage user sessions carefully to avoid anyone hijacking them, and I'd store passwords securely by

using strong hashing. This way, I'm covering the basics to keep the app and its users safe.

By GenZ Career on YouTube

Discuss how would you secure a Spring Boot application using
JSON Web Token (JWT)

To use JSON Web Token (JWT) for securing a Spring Boot app, I'd set it up so that when users

log in, they get a JWT. This token has its details and permissions. For every action the user

wants to do afterward, the app checks this token to see if they're allowed.

I'd use special security checks in Spring Boot to grab and check the JWT on each request,

making sure it's valid. This way, the app doesn't have to keep asking the database who the user

is, making things faster and safer, especially for apps that have a lot of users or need to be very

secure.

By GenZ Career on YouTube

How can Spring Boot applications be made more resilient to failures,
especially in microservices architectures?

To make Spring Boot apps stronger against failures, especially when using many services together, we

can use tools and techniques like circuit breakers and retries with libraries like Resilience4j. A circuit

breaker stops calls to a service that's not working right, helping prevent bigger problems. Retry logic

tries the call again in case it fails for a minor reason.

Also, setting up timeouts helps avoid waiting too long for something that might not work. Plus, keeping

an eye on the system with good logging and monitoring lets spot and fix issues fast. This approach

keeps the app running smoothly, even when some parts have trouble.

By GenZ Career on YouTube

Explain the conversion of business logic into serverless functions with
Spring Cloud Function.

To make serverless functions with Spring Cloud Function, we can write our business tasks as

simple Java functions.

These are then set up to work as serverless functions, which means they can run on cloud

platforms without us having to manage a server.

This setup lets our code automatically adjust to more or fewer requests, saving money and

making maintenance easier. Basically, we focus on the code, and Spring Cloud Function handles

the rest, making it ready for the cloud.

By GenZ Career on YouTube

How can Spring Cloud Gateway be configured for routing, security, and
monitoring?

For routing, we define routes in the application properties or through Java config, specifying paths and

destinations for incoming requests.

For security, we integrate Spring Security to add authentication, authorization, and protection against

common threats.

To enable monitoring, we use Spring Actuator, which provides built-in endpoints for monitoring and

managing the gateway.

This setup allows us to control how requests are handled, secure the gateway, and keep an eye on its

performance and health, all within the Spring ecosystem.
By GenZ Career on YouTube

How would you manage and monitor asynchronous tasks in a Spring Boot
application, ensuring that you can track task progress and handle
failures?

I'd integrate with a messaging system like RabbitMQ or Apache Kafka. First, I'd add the necessary

dependencies in my pom.xml or build.gradle file. Then, I'd configure the connection to the message

broker in my application.properties or application.yml file, specifying details like the host, port, and

credentials.

Next, I'd use Spring's @EnableMessaging annotation to enable messaging capabilities and create a

@Bean to define the queue, exchange, and binding. To send messages, I'd autowire the KafkaTemplate

and use its send or convertAndSend method, passing the message and destination.

By GenZ Career on YouTube

Your application needs to process notifications asynchronously using
a message queue. Explain how you would set up the integration and
send messages from your Spring Boot application.

To manage and monitor asynchronous tasks in a Spring Boot app, I'd use the @Async annotation

to run tasks in the background and CompletableFuture to track their progress and handling

results or failures. For thread management, I'd configure a ThreadPoolTaskExecutor to

customize thread settings.

To monitor these tasks, I'd integrate Spring Boot Actuator, which provides insights into app

health and metrics, including thread pool usage. This combination allows me to efficiently run

tasks asynchronously, monitor their execution, and ensure proper error handling, keeping the app

responsive and reliable.

By GenZ Career on YouTube

You need to secure a Spring Boot application to ensure that only
authenticated users can access certain endpoints. Describe how
you would configure Spring Security to set up a basic form-based
authentication.

First I'd start by adding the Spring Security dependency to my project. Then, I'd configure a

WebSecurityConfigurerAdapter to customize security settings.

In this configuration, I'd use the http.authorizeRequests() method to specify which endpoints require

authentication. I'd enable form-based authentication by using http.formLogin(), which automatically provides

a login form.

Additionally, I'd configure users and their roles in the configure(AuthenticationManagerBuilder auth)

method, either in-memory or through a database.

By GenZ Career on YouTube

How to Tell an Auto-Configuration to Back Away When a Bean
Exists?

In Spring Boot, to make an auto-configuration step back when a bean already exists, we use the

@ConditionalOnMissingBean annotation. This tells Spring Boot to only create a bean if it doesn't already

exist in the context.

For example, if we are auto-configuring a data source but want to back off when a data source bean is

manually defined, we annotate the auto-configuration method with

@ConditionalOnMissingBean(DataSource.class). This ensures our custom configuration takes

precedence, and Spring Boot's auto-configuration will not interfere if the bean is already defined.

By GenZ Career on YouTube

How to Deploy Spring Boot Web Applications as Jar and War
Files?

To deploy Spring Boot web applications, we can package them as either JAR or WAR files. For a JAR, we

use Spring Boot's embedded server, like Tomcat, by running the command mvn package and then java -

jar target/myapplication.jar.

If we need a WAR file for deployment on an external server, we change the packaging in the pom.xml to

<packaging>war</packaging>, ensure the application extends SpringBootServletInitializer, and then build

with mvn package. The WAR file can then be deployed to any Java servlet container, like Tomcat or

Jetty.

By GenZ Career on YouTube

What Does It Mean That Spring Boot Supports Relaxed
Binding?

Spring Boot's relaxed binding means it's flexible in how properties are defined in configuration files.

This flexibility allows us to use various formats for property names.

For example, if we have a property named server.port, we can write it in different ways like server.port,

server-port, or SERVER_PORT. Spring Boot understands these as the same property. This feature is

especially helpful because it lets us adapt to different environments or personal preferences without

changing the way we access these properties in my code.

It makes Spring Boot configurations more tolerant to variations, making it easier for me to manage and

use properties in my applications.

By GenZ Career on YouTube

Discuss the integration of Spring Boot applications with CI/CD
pipelines.

Integrating Spring Boot apps with CI/CD pipelines means making the process of building, testing, and

deploying automated.

When we make changes to our code and push them, the pipeline automatically builds the app, runs tests,

and if everything looks good, deploys it. This uses tools like Jenkins or GitHub Actions to automate

tasks, such as compiling the code and checking for errors.

If all tests pass, the app can be automatically sent to a test environment or directly to users. This

setup helps us quickly find and fix errors, improve the quality of our app, and make updates faster

without manual steps.

By GenZ Career on YouTube

Can we override or replace the Embedded Tomcat server in
Spring Boot?

Yes, we can override or replace the embedded Tomcat server in Spring Boot. If we prefer using a

different server, like Jetty or Undertow, we simply need to exclude Tomcat as a dependency and

include the one we want to use in our pom.xml or build.gradle file.

Spring Boot automatically configures the new server as the embedded server for our application. This

flexibility allows us to choose the server that best fits our needs without significant changes to our

application, making Spring Boot adaptable to various deployment environments and requirements.

By GenZ Career on YouTube

How to resolve whitelabel error page in the spring boot
application?

To fix the Whitelabel Error Page in a Spring Boot app, we need to check if our URLs are correctly
mapped in the controllers. If a URL doesn't match any controller, Spring Boot shows this error page.

We should add or update our mappings to cover the URLs we are using. Also, we can create custom error
pages or use @ControllerAdvice to handle errors globally.

This way, instead of the default error page, visitors can see a more helpful or custom message when
something goes wrong.

By GenZ Career on YouTube

How can you implement pagination in a springboot application?

To implement pagination in a Spring Boot application, I use Spring Data JPA's Pageable interface.

In the repository layer, I modify my query methods to accept a Pageable object as a parameter.

When calling these methods from my service layer, I create an instance of PageRequest,

specifying the page number and page size I want.

This PageRequest is then passed to the repository method. Spring Data JPA handles the

pagination logic automatically, returning a Page object that contains the requested page of data

along with useful information like total pages and total elements. This approach allows me to

efficiently manage large datasets by retrieving only a subset of data at a time.

By GenZ Career on YouTube

How to handle a 404 error in spring boot?

To handle a 404 error in Spring Boot, we make a custom error controller. we implement the

ErrorController interface and mark it with @Controller.

Then, we create a method that returns our error page or message for 404 errors, and we map this

method to the /error URL using @RequestMapping.

In this method, we can check the error type and customize what users see when they hit a page that

doesn't exist. This way, we can make the error message or page nicer and more helpful.

By GenZ Career on YouTube

How can Spring Boot be used to implement event-driven
architectures?

Spring Boot lets us build event-driven architectures by allowing parts of our application to

communicate through events. we create custom events by making classes that extend

ApplicationEvent. To send out an event, we use ApplicationEventPublisher.

Then, we set up listeners with @EventListener to react to these events. This can be done in real-

time or in the background, making our application more modular. Different parts can easily talk to

each other or respond to changes without being directly connected, which is great for tasks like

sending notifications or updating data based on events, helping keep my code clean and

manageable.

By GenZ Career on YouTube

What are the basic Annotations that Spring Boot offers?

Spring Boot offers several basic annotations for the development. @SpringBootApplication is a key

annotation that combines @Configuration, @EnableAutoConfiguration, and @ComponentScan, setting

up the foundation for a Spring Boot application.

@RestController and @RequestMapping are essential for creating RESTful web services, allowing us to

define controller classes and map URL paths to methods.

@Service and @Repository annotations mark service and data access layers, respectively, promoting

separation of concerns. @Autowired enables dependency injection, automatically wiring beans. These

annotations are crucial in reducing boilerplate code, speeding up development, and maintaining clear

architecture, making Spring Boot applications easy to create and manage.
By GenZ Career on YouTube

Discuss the integration and use of distributed tracing in Spring Boot
applications for monitoring and troubleshooting.

Integrating distributed tracing in Spring Boot applications, like with Spring Cloud Sleuth or

Zipkin, helps in monitoring and troubleshooting by providing insights into the application's

behavior across different services.

When a request travels through microservices, these tools assign and propagate unique IDs for

the request, creating detailed traces of its journey. This makes it easier to understand the flow,

pinpoint delays, and identify errors in complex, distributed environments.

By visualizing how requests move across services, we can optimize performance and quickly

resolve issues, enhancing reliability and user experience in microservice architectures.

By GenZ Career on YouTube

Your application needs to store and retrieve files from a cloud storage
service. Describe how you would integrate this functionality into a
Spring Boot application.

To integrate cloud storage in a Spring Boot application, I'd use a cloud SDK, like AWS SDK for S3 or

Google Cloud Storage libraries, depending on the cloud provider.

First, I'd add the SDK as a dependency in my pom.xml or build.gradle file. Then, I'd configure the

necessary credentials and settings, in application.properties or application.yml, for accessing the cloud

storage.

I'd create a service class to encapsulate the storage operations—uploading, downloading, and deleting

files. By autowiring this service where needed, I can interact with cloud storage seamlessly, leveraging

Spring's dependency injection to keep my code clean and manageable.

By GenZ Career on YouTube

To protect your application from abuse and ensure fair usage, you
decide to implement rate limiting on your API endpoints. Describe a
simple approach to achieve this in Spring Boot.

To implement rate limiting in a Spring Boot application, a simple approach is to use a library like

Bucket4j or Spring Cloud Gateway with built-in rate-limiting capabilities. By integrating one of these

libraries, I can define policies directly on my API endpoints to limit the number of requests a user can

make in a given time frame.

This involves configuring a few annotations or settings in my application properties to specify the rate

limits. This setup helps prevent abuse and ensures that all users have fair access to my application's

resources, maintaining a smooth and reliable service.

By GenZ Career on YouTube

For audit purposes, your application requires a "soft delete" feature,
where records are marked as deleted instead of being removed from the
database. How would you implement this feature in your Spring Boot
application?

To implement a "soft delete" feature in a Spring Boot application, I would add a deleted boolean

column or a deleteTimestamp datetime column to my database entities.

Instead of physically removing records from the database, I'd update this column to indicate a

record is deleted. In my repository layer, I'd customize queries to filter out these "deleted"

records from all fetch operations, ensuring they're effectively invisible to the application.

This approach allows me to retain the data for audit purposes while maintaining the appearance

of deletion, providing a balance between data integrity and compliance with deletion requests.

By GenZ Career on YouTube

You're tasked with building a non-blocking, reactive REST API
that can handle a high volume of concurrent requests efficiently.
Describe how you would use Spring WebFlux to achieve this.

To build a high-performance, non-blocking REST API with Spring WebFlux, I'd first add spring-

boot-starter-webflux to my project. This lets me use Spring's reactive features.

In my controllers, I'd use @RestController and return Mono or Flux for handling single or

multiple data items asynchronously. This makes my API efficient under heavy loads by using

system resources better.

For database interactions, I'd use reactive repositories like ReactiveCrudRepository, ensuring all

parts of my application communicate non-blockingly. This setup helps manage lots of concurrent

requests smoothly, making my API fast and scalable.

By GenZ Career on YouTube

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

