wait
Object wait methods has three variance, one which waits indefinitely for any other thread to call notify or notifyAll method on the object to wake up the current thread.
notify
notify method wakes up only one thread waiting on the object and that thread starts execution.
notifyAll
notifyAll method wakes up all the threads waiting on the object, although which one will process first depends on the OS implementation.
[image:]
[image: Thread life cycle and thread states - 3]

https://raw.githubusercontent.com/vsaravanan/java22/master/src/main/java/com/saravanjs/java22/console/multithreading/WaitNotifyTest.java

Java Thread wait, notify and notifyAll Example | DigitalOcean

class Message {
 private String msg;

 public Message(String str){
 this.msg=str;
 }

 public String getMsg() {
 return msg;
 }

 public void setMsg(String str) {
 this.msg=str;
 }

}

class Waiter implements Runnable{

 private Message msg;

 public Waiter(Message m){
 this.msg=m;
 }

 @Override
 public void run() {
 String name = Thread.currentThread().getName();
 synchronized (msg) {
 try{
 System.out.println(name+" waiting to get notified at time:"+System.currentTimeMillis());
 msg.wait();
 }catch(InterruptedException e){
 e.printStackTrace();
 }
 System.out.println(name+" waiter thread got notified at time:"+System.currentTimeMillis());
 //process the message now
 System.out.println(name+" processed: "+msg.getMsg());
 }
 }

}

class Notifier implements Runnable {

 private Message msg;

 public Notifier(Message msg) {
 this.msg = msg;
 }

 @Override
 public void run() {
 String name = Thread.currentThread().getName();
 System.out.println(name+" started");
 try {
 Thread.sleep(1000);
 synchronized (msg) {
 msg.setMsg(name+" Notifier work done");
 msg.notify();
// msg.notifyAll();
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 }

}

public class WaitNotifyTest {

 public static void main(String[] args) {
 Message msg = new Message("process it");
 Waiter waiter = new Waiter(msg);
 new Thread(waiter,"waiter").start();

 Waiter waiter1 = new Waiter(msg);
 new Thread(waiter1, "waiter1").start();

 Notifier notifier = new Notifier(msg);
 new Thread(notifier, "notifier").start();
 System.out.println("All the threads are started");
 }

}

for msg.notify();

All the threads are started
notifier started
waiter waiting to get notified at time:1718699314333
waiter1 waiting to get notified at time:1718699314342
waiter waiter thread got notified at time:1718699315335
waiter processed: notifier Notifier work done

for msg.notifyAll();

All the threads are started
notifier started
waiter waiting to get notified at time:1718699488848
waiter1 waiting to get notified at time:1718699488860
waiter waiter thread got notified at time:1718699489854
waiter processed: notifier Notifier work done
waiter1 waiter thread got notified at time:1718699489858
waiter1 processed: notifier Notifier work done

image1.jpeg
Ob]ect notify();

Runnable Sleeping

start();

Waiting

Schedule
or
Thread.yield);

Thread.sleep();
Objectjwait();

Running

[Execiting) data/sync received
Blocked 1/O

Synchronized

Dead
(finish)

Another Thread closed socket

image2.jpeg
state machine Thread States {protocol}

thread was selected by
thread scheduler to run/

v
yield/ i1
S I
i

Runnable

thread terminated/

>

thread was suspended
by thread scheduler/

e e

5

[
i 4
1 1
1 1
| 1
1 1
1 1
0% timeout elapsed |
1 Time Waiting [~=—~ =5
i ! thread terminated/ 0
1 G T St 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
{ notify/ ! !
| T 1 '
! notifyAll/ ! 1
f Waiting [--- i l
1 LockSupport park/ L thread terminated/ 1
i A i =
1 1
| 1
1 1
1 walt for lock to enter 1
} synchro block method !
0 monitor lock acquired |
1 walt for lock to reenter 1
1 synchro block or method Blocked Sane :

e

