[image:]
[image:]
[image:]
[image:]
[image:]

5.1. Single Responsibility Violation

Being part of the SOLID principles, the Single responsibility principle states each class should have only one responsibility. To put it differently, one class should be responsible for only one action and, thus, have only one reason to change.
When we use field injection, we may end up violating the single responsibility principle. We can easily add more dependencies than necessary and create a class that’s doing more than one job.
On the other hand, if we’re using constructor injection, we’d notice we might have a design problem if a constructor

5.2. Circular Dependencies

Simply put, circular dependencies occur when two or more classes depend on each other. Because of these dependencies, it’s impossible to construct objects, and the execution can end up with runtime errors or infinite loops.

@Component
public class DependencyA {

 @Autowired
 private DependencyB dependencyB;
}

@Component
public class DependencyB {

 @Autowired
 private DependencyA dependencyA;
}

Noncompliant code example
String firstName = getFirstName(); // String overrides equals
String lastName = getLastName();

if (firstName == lastName) { ... }; // Non-compliant; false even if the strings have the same value
Compliant solution
String firstName = getFirstName();
String lastName = getLastName();

if (firstName != null && firstName.equals(lastName)) { ... };

image1.png
w |§aravanjs-project PUBLIC

Last analysis: 2 months ago - 519 Lines of Code - Java, XML

A O A1 A 15 A — Qoo% « 00%

Security Reliability Maintainability Hotspots Reviewed Coverage Duplications

image2.png
v Clean Code Attribute

Consistency 710
Intentionality 1.7k
Adaptability 263
Responsibility 157

v Software Quality

Security 243
Reliability 752
Maintainability 2k

v Severity ?

O High 751
@ Medium 1.3k
O Low 846
v Type

¥¥ Bug 657
& Vulnerability 240
& Code Smell 2k

@ Security Hotspot 404

image3.png
Noncompliant code example

public class SomeService {
@Autowired
private SomeDependency someDependency; // Noncompliant

private String name = someDependency.getName(); // Will throw a NullPointerException

Compliant solution|

public class SomeService {
private final SomeDependency someDependency;
private final String name;

@Autowired

public SomeService(SomeDependency someDependency) {
this.someDependency = someDependency;
name = someDependency.getName();

image4.png
3. Null-Safety

Field injection creates a risk of NullPointerException if dependencies aren't correctly initialized.

Let's define the EmailService class and add the EmailValidator dependency using the field injection:

public class EmailService {

private EmailValidator emailValidator;

Now, let's add the process() method:

public void process(String email) {
if(!emailValidator.isValid(email)){
throw new IllegalArgumentException(INVALID_EMAIL);

}

image5.png
Now, we can reduce the risk of NullPointerException using the constructor injection:

private final EmailValidator emailValidator;

public EmailService(final EmailValidator emailValidator) {
this.emailValidator = emailValidator;

