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CHAPTER 1

Apache Spark’s Structured APIs

In this chapter, we will explore the principal motivations behind adding structure to
Apache Spark, how structure led to the creation of high-level APIs - DataFrames and
Datasets - and their unification in Spark 2.x across its components, and the Spark
SQL engine that underpins these structured high-level APIs.

When Spark SQL was first introduced in the early Spark 1.x releases1, followed by
DataFrames as a successor to SchemaRDDs2 3 in Spark 1.3, we got our first glimpse of
structure in Spark. At this time, Spark SQL introduced high-level expressive opera‐
tional functions, mimicking SQL-like syntax, and DataFrames by providing
spreadsheet-like or tabular named columns with data types dictated by a schema.
DataFrames laid the foundation for more structure in subsequent releases and paved
the path to performant operations in Spark’s computational queries.

But before we talk about structure in Spark, let’s get a brief glimpse of what it means
to not have structure in Spark by peeking into the simple RDD programming API
model.

Spark: What’s Underneath an RDD?
These are the three vital characteristics associated with an RDD:4 5
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Dependencies

Partitions (with some locality information)

Compute Function: Partition => Iterator [T]

All three are integral to the simple RDD programming API model upon which all
higher-level functionality is constructed. First, a list of dependencies that instruct
Spark how an RDD is constructed with its inputs. When needed to reproduce results,
Spark can by reproduce an RDD from these dependencies and replicate operations
on it. This characteristic gives RDD resiliency.

Second, partitions provide Spark the ability to split the work to parallelize computa‐
tion on partitions across Executors. In some cases, for example, reading from HDFS,
Spark will use locality information, to send work to Executors close to the data. That
way less data is transmitted over the network.

And finally, RDD has a compute function that produces an Iterator[T] for the data
that will be stored in the RDD.

Simple and elegant! Yet there are a couple of problems with this original model. For
one, the compute function (or computation) is opaque to Spark. That is, Spark does
not know what you are doing in the compute function: whether you are performing a
join, filter, select, or an aggregation; Spark only sees it as a lambda expression.
Another problem is that the Iterator[T] data type is also opaque for Python RDDs;
Spark only knows that it’s a generic object in Python.

Second, unable to inspect the computation or expression in the function, Spark has
no way to optimize the expression since it has no comprehension of its intention.
And finally Spark has no knowledge of the specific data type in T. To Spark it’s an
opaque object; it has no idea if you are accessing a column or a column of a certain
type within an object. Therefore, all Spark can do is serialize the opaque object as a
series of bytes, at the expense of using any form of data compression techniques.

This opacity hampers Spark’s ability to rearrange your computation into an efficient
query plan. So what’s the solution?

Structuring Spark
Spark 2.x introduces a few key schemes to structuring Spark. One is to express a com‐
putation by using common patterns found in data analysis. These patterns are
expressed as high-level operations such as filtering, selecting, counting, aggregating,
averaging, grouping, etc. By limiting these operations to a few common patterns in
data analysis, Spark is now equipped to do more with less—because of clarity and
specificity in your computation.
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This specificity is further narrowed by a second scheme through a set of common
operators in a domain-specific language (DSL). Through a set of operations in DSL,
available as APIs in Spark’s supported languages (Java, Python, Spark, R and SQL),
Spark knows what you wish to compute with your data, and as a result, it can con‐
struct an efficient query plan for execution.

And the final scheme of order and structure is to allow you to arrange your data in a
tabular format, such as a SQL table or spreadsheet, with supported Structured Data
Types (which we will cover shortly).

Collectively, order, arrangement, clarity, and tabular data render structure to Spark.
But what’s it good for—all this structure?

Key Merits and Benefits
Structure yields a number of benefits, including better performance and space effi‐
ciency across Spark components. We will explore these benefits further when we talk
about the use of DataFrames and Datasets APIs shortly, but for now a structure in
Spark, in essence, offers developers expressivity, simplicity, composability, and uni‐
formity.

Let’s demonstrate expressivity and composability first with a simple code snippet. In
the code below, we want to aggregate all ages, group them by name, and then average
the age—a common recurring data analysis or discovery pattern. If we were to use
low-level RDD API (as with the above opacity problem) the code would look as fol‐
lows:

# In Python
        # Create an RDDs of tuples (name, age)
        dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31), ("Jules", 30), 
("TD", 35), ("Brooke", 25)])
        # Use map and reduceByKey transformations with their 
        # lambda expressions to aggregate and then compute average
        agesRDD = dataRDD.map(lambda x, y: (x, (y, 1))) \
         .reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1])) \
         .map(lambda x, y, z: (x, y / z))

Now, no one would dispute the above code is cryptic and hard to read. It instructs
Spark how-to aggregate keys and compute averages with a string of lambda functions.
In other words, the computation is instructing Spark how-to compute my query. It’s
completely opaque to Spark, for it has no idea what your intention is.

By contrast, what if we express the same query with high-level DSL operators and the
DataFrames API, thereby instructing Spark what-to-do. Have a look:

# In Python 
        from pyspark.sql import SparkSession
        from pyspark.sql.functions import avg
        # Create a DataFrame using SparkSession

Structuring Spark | 7



        data_df = spark.createDataFrame([("Brooke", 20), ("Denny", 31), 
("Jules", 30), ("TD", 35), ("Brooke", 25)], ["name", "age"])
        # Group the same names together, aggregate their age, and compute an 
average
        avg_df = data_df.groupBy("name").agg(avg("age"))
        # Show the results of the final execution
        avg_df.show()
        +------+--------+
        | name|avg(age)|
        +------+--------+
        |Brooke| 22.5|
        | Jules| 30.0|
        | TD| 35.0|
        | Denny| 31.0|
        +------+--------+

Again, no one would dispute that this version of the code is far more expressive as
well as simpler than the earlier version because we are using high-level DSL operators
and APIs to instruct Spark what-to-do. In effect, we have employed these operators to
compose our query. And because Spark can inspect or parse this query and under‐
stand your intention, it can optimize or arrange the operations for efficient execu‐
tion. Spark knows exactly what you wish to do: group people by their names,
aggregate their ages and then compute an average of all ages with the same name.
You have composed an entire computation using high-level operators as a single sim‐
ple query.

How expressive is that!

While many would contend that by using only high-level DSL expressive operators to
map to common or recurring data analysis patterns to introduce order and structure,
we are limiting the scope of the developers’ ability to instruct or control how his or
her query should be computed. Rest assured that you are not confined to these struc‐
tured patterns; you can switch back at any time to unstructured low-level RDDs API,
albeit we hardly find a need to do so.

As well as being simpler to read, the structure of Spark’s high-level APIs also introdu‐
ces uniformity across its components and languages. For example, the Scala code
below does the same thing as above—and the API looks identical. In short, not only
do we have parity among high-level APIs across languages, but they bring uniformity
across languages and Spark components. (You will discover this uniformity in subse‐
quent chapters on structured streaming and machine learning.)

// In Scala
        import org.apache.spark.sql.functions.avg
        // Create a DataFrame using SparkSession
        val dataDF = spark.createDataFrame(Seq(("Brooke", 20), ("Denny", 31), 
("Jules", 30), ("TD", 35))).toDF("name", "age")
        // Group the same names together, aggregate their age, and compute an 
average

8 | Chapter 1: Apache Spark’s Structured APIs
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        val avgDF = dataDF.groupBy("name").agg(avg("age"))
        // Show the results of the final execution
        avgDF.show()
        +------+--------+
        | name|avg(age)|
        +------+--------+
        |Brooke| 22.5|
        | Jules| 30.0|
        | TD| 35.0|
        | Denny| 31.0|
        +------+--------+

Hint: Some of these DSL operators perform relational-like operations, such as select,
filter, groupBy or aggregate, something you may be familiar with if you know SQL.

Consequently, all this simplicity and expressivity that we developers cherish is possi‐
ble because of the underpinning Spark SQL engine upon which the high-level struc‐
tured APIs are built. We will talk about Spark SQL engine shortly6, but first let’s
explore the high-level structured APIs.

Structured APIs: DataFrames and Datasets APIs
The Spark SQL engine (which we will discuss below) supports Structured APIs in
Spark 2.x and Spark 3.0. It is because of this underpinning engine across all Spark
components that we get uniform APIs. Whether you express a query against a Data‐
Frame in Structured Streaming or MLlib, you are always transforming and operating
on DataFrames as structured data. (We will explore more of these APIs in Structured
Streaming and Machine Learning in later chapters.)

For now, let’s explore those APIs and DSLs for common operations and how to use
them for data analytics.

DataFrame API
Inspired by Pandas7 in structure, format, and a few specific operations, Spark Data‐
Frames are like a distributed table with named columns with a schema, where each
column has a specific data type: integer, string, array, map, real, date, timestamp, etc.
To a human’s eye, a Spark DataFrame is like a table:

Id
(Int)

First
(String)

Last
(String)

Url
(String)

Published
(Date)

Hits
(Int)

Campaigns
(List[Strings])

1 Jules Damji https://tinyurl.1 1/4/2016 4535 [twitter, LinkedIn]
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8 Spark: The Definitive Guide, pg 54
9 https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/types/DataTypes.html

2 Brooke Wenig https://tinyurl.2 5/5/2018 8908 [twitter, LinkedIn]

3 Denny Lee https://tinyurl.3 6/7/2019 7659 [web, twitter, FB,
LinkedIn]

4 Tathagata Das https://tinyurl.4 5/12/2018 10568 [twitter, FB]

5 Matei Zaharia https://tinyurl.5 5/14/2014 40578 [web, twitter, FB,
LinkedIn]

6 Reynold Xin https://tinyurl.6 3/2/2015 25568 [twitter, LinkedIn]

Table 3-1 Table like format of a DataFrame

When data is visualized as a structured table, it’s not only easy to digest but it’s easy
to work with on common operations you might want to execute on rows and col‐
umns. Like RDDs, DataFrames are immutable. And as with RDDs, Spark keeps a lin‐
eage of all transformations, even with the columns. A named column in a DataFrame
and its associated Spark data type can be declared in the schema.

Let’s examine both the generic and structured data types in Spark before we use them
to define a schema. Then, we will illustrate how to create a DataFrame with a schema,
capturing the data in Table 3-1.

Spark’s Basic Data Types
Matching its supported programming languages, Spark supports basic internal data
types. These data types can be declared in your Spark application or defined in your
schema. For example, in Scala, you can define or declare a particular column name to
be of type String or Byte or Long.

$SPARK_HOME/bin/spark-shell…
          scala> import org.apache.spark.sql.types._
          import org.apache.spark.sql.types._
          scala> val nameTypes = StringType
          nameTypes: org.apache.spark.sql.types.StringType.type = StringType
          scala> val firstName = nameTypes
          firstName: org.apache.spark.sql.types.StringType.type = StringType
          scala> val lastName = nameTypes
          lastName: org.apache.spark.sql.types.StringType.type = StringType

Here are the other basic data types supported in Spark.8 9 They all are subtypes of
class DataTypes, except for DecimalType.

Data Type Value Assigned in Scala APIs to instantiate

ByteType Byte DataTypes.ByteType

10 | Chapter 1: Apache Spark’s Structured APIs
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ShortType Short DataTypes.ShortType

IntegerType Int DataTypes.IntegerType

LongType Long DataTypes.LongType

FloatType Float DataTypes.FloatType

DoubleType Double DataTypes.DoubleType

StringType String DataTypes.StringType

DecimalType java.math.BigDecimal DecimalType

Table 3-2 Scala Basic Data Types in Spark

Likewise, Python too supports similar basic data types as enumerated in the table
below: 10 11

Data Type Value Assigned in Python APIs to instantiate

ByteType Int or long DataTypes.ByteType

ShortType Short DataTypes.ShortType

IntegerType Int or long DataTypes.IntegerType

LongType long DataTypes.LongType

FloatType Float DataTypes.FloatType

DoubleType Float DataTypes.DoubleType

StringType String DataTypes.StringType

DecimalType decimal.Decimal DecimalType

Table 3-3 Python Basic Data Types in Spark

Spark’s Structured and Complex Data Types
For complex data analytics, you will hardly deal only with simple or basic data types.
Rather, your data will be complex, often structured or nested. For that you will need
Spark to handle these complex data types. They come in many forms: maps, arrays,
structs, date, timestamp, fields etc,.

Data Type Value Assigned in Scala APIs to instantiate

BinaryType Array[Byte] DataTypes.BinaryType

TimestampType java.sql.Timestamp DataTypes.TimestampType

DateType java.sql.Date DataTypes.DateType

Structured APIs: DataFrames and Datasets APIs | 11
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ArrayType scala.collection.Seq DataTypes.createArrayType(ElementType)
For example, DataTypes.createArray(BooleanType)
DataTypes.createArrayType(IntegerType)

MapType scala.collection.Map DataTypes.createMapType(keyType, valueType)
For example, 
DataTypes.createMapType(IntegerType, StringType)

StructType org.apache.spark.sql.Row StructType(ArrayType[fieldTypes])
This is an array of FieldTypes

StructField A value type in Scala of this type of
the field

StructField(name, dataType, [nullable])
For example,
StructField(“jules”, StringType)

Table 3-4 Scala Structured Data Types in Spark

The equivalent structured data types in Python are enumerated below:12 13

Data Type Value Assigned in Python APIs to instantiate

BinaryType Array[Byte] BinaryType()

TimestampType datetime.datetime TimestampType()

DateType datetime.date DateType()

ArrayType List, tuple, or array ArrayType(dataType, [nullable])

MapType dict MapType(keyType, valueType, [nullable])

StructType List or tuple StructType(fields).
Fields is a list of StructFields

StructField The value of type in Python of this field StructField(name, dataType, [nullable])
StructField(“jules”, StringType)

Table 3-5 Python Structured Data Types in Spark

While these tables showcase the myriad types supported, it’s far more important to
see how these types come together when you define a schema for your data.

Schemas and Creating DataFrames
A schema in Spark defines the column names and its associated data types for a Data‐
Frame. More often schemas come into play when you are reading structured data
from DataSources (more on this in the next chapter). Defining schema as opposed to
schema-on-read offers three benefits: 1) you relieve Spark from the onus of inferring
data types 2) you prevent Spark from creating a separate job just to read a large por‐
tion of your file to ascertain the schema, which for a very large data file, can be

12 | Chapter 1: Apache Spark’s Structured APIs
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expensive and time consuming, and 3) detects errors early if data doesn’t match the
schema.

So we encourage you to always define your schema upfront whenever you want to
read a very large file from a data source. For a short illustration, and using Table 3-1
for our data, let’s define a schema and use that schema to create a DataFrame.

Two Ways t o Define Schema .    Spark allows you to define schema in two ways. One way
is to define it programmatically. Another way is to employ a Data Definition Lan‐
guage (DDL) string, which is much simpler and easier to read.

To define a schema programmatically for a DataFrame with three named columns
author, title, pages, you can use the Spark DataFrame API. For example,

// In Scala
            import org.apache.spark.sql.types._
            val schema = StructType(Array(StructField("author", StringType, 
false),
             StructField("title", StringType, false),
             StructField("pages", IntegerType, false)))
            # In Python
            from pyspark.sql.types import *
            schema = StructType([StructField("author", StringType(), False),
             StructField("title", StringType(), False),
             StructField("pages", IntegerType(), False)])
            To define the same schema using DDL is much simpler.
            // In Scala
            val schema = "author STRING, title STRING, pages INT"
            # In Python
            schema = "author STRING, title STRING, pages INT"

Of the two ways to define schema, the one you should choose is up to you. For many
examples, we will use both.

# In Python 
            from pyspark.sql.types import *
            from pyspark.sql import SparkSession
            # define schema for our data using DDL 
            schema = "`Id` INT,`First` STRING,`Last` STRING,`Url` STRING,`Pub-
lished` STRING,`Hits` INT,`Campaigns` ARRAY<STRING>"
            # create our static data
            data = [[1, "Jules", "Damji", "https://tinyurl.1", "1/4/2016", 
4535, ["twitter", "LinkedIn"]],
             [2, "Brooke","Wenig","https://tinyurl.2", "5/5/2018", 8908, ["twit-
ter", "LinkedIn"]],
             [3, "Denny", "Lee", "https://tinyurl.3","6/7/2019",7659, ["web", 
"twitter", "FB", "LinkedIn"]],
             [4, "Tathagata", "Das","https://tinyurl.4", "5/12/2018", 10568, 
["twitter", "FB"]],
             [5, "Matei","Zaharia", "https://tinyurl.5", "5/14/2014", 40578, 
["web", "twitter", "FB", "LinkedIn"]],
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             [6, "Reynold", "Xin", "https://tinyurl.6", "3/2/2015", 25568, 
["twitter", "LinkedIn"]]
             ]
            # main program
            if __name__ == "__main__":
             # create a SparkSession
             spark = (SparkSession
             .builder
             .appName("Example-3_6")
             .getOrCreate())
             # create a DataFrame using the schema defined above
             blogs_df = spark.createDataFrame(data, schema)
             # show the DataFrame; it should reflect our table above
             blogs_df.show()
             print()
             # print the schema used by Spark to process the DataFrame
             print(blogs_df.printSchema())

Running this program from the console will produce the following output

$ python Example-3_6.py
            …
            …
            +-------+---------+-------+-----------------+---------+-----
+----------------------------+
            |Id|First |Last |Url |Published|Hits |Campaigns |
            +-------+---------+-------+-----------------+---------+-----
+----------------------------+
            |1 |Jules |Damji |https://tinyurl.1|1/4/2016 |4535 |[twitter, 
LinkedIn] |
            |2 |Brooke |Wenig |https://tinyurl.2|5/5/2018 |8908 |[twitter, 
LinkedIn] |
            |3 |Denny |Lee |https://tinyurl.3|6/7/2019 |7659 |[web, twitter, 
FB, LinkedIn]|
            |4 |Tathagata|Das |https://tinyurl.4|5/12/2018|10568|[twitter, FB] |
            |5 |Matei |Zaharia|https://tinyurl.5|5/14/2014|40578|[web, twitter, 
FB, LinkedIn]|
            |6 |Reynold |Xin |https://tinyurl.6|3/2/2015 |25568|[twitter, 
LinkedIn] |
            +-------+---------+-------+-----------------+---------+-----
+----------------------------+
            root
             |-- Id: integer (nullable = false)
             |-- First: string (nullable = false)
             |-- Last: string (nullable = false)
             |-- Url: string (nullable = false)
             |-- Published: string (nullable = false)
             |-- Hits: integer (nullable = false)
             |-- Campaigns: array (nullable = false)
             | |-- element: string (containsNull = false)

If you want to use this schema elsewhere in the code, simply execute blogs_df.schema
and it will return this schema definition:
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StructType(List(StructField(“Id”,IntegerType,false),
            StructField(“First”,StringType,false),
            StructField(“Last”,StringType,false),
            StructField(“Url”,StringType,false),
            StructField(“Published”,StringType,false),
            StructField(“Hits”,IntegerType,false),
            StructField(“Campaigns”,ArrayType(StringType,true),false)))

Note: The last boolean field argument indicates whether this field can have null val‐
ues. If your data can be null for a particular field then specifying true means this field
is “nullable.”

As you can observe, the DataFrame layout matches that of our Table 3-1 along with
the respective data types and schema output.

Similarly if you were to read the data from a JSON file, instead of creating static data,
the schema definition would be identical. Let’s illustrate the same code with a Scala
example, except reading from a JSON file.

// In Scala
            package main.scala.chapter3
            import org.apache.spark.sql.SparkSession
            import org.apache.spark.sql.types._
            object Example3_7 {
             def main(args: Array[String]) {
             val spark = SparkSession
             .builder
             .appName("Example-3_7")
             .getOrCreate()
             if (args.length <= 0) {
             println("usage Example3_7 <file path to blogs.json>")
             System.exit(1)
             }
             // get the path to the JSON file
             val jsonFile = args(0)
             // define our schema programmatically
             val schema = StructType(Array(StructField("Id", IntegerType,false),
             StructField("First", StringType, false),
             StructField("Last", StringType, false),
             StructField("Url", StringType, false),
             StructField("Published", StringType, false),
             StructField("Hits", IntegerType, false),
             StructField("Campaigns", ArrayType(StringType), false)))
             // Create a DataFrame by reading from the JSON file 
             // with a predefined Schema
             val blogsDF = spark.read.schema(schema).json(jsonFile)
             print()
             // show the DataFrame schema as output
             blogsDF.show(false)
             // print the schemas
             print(blogsDF.printSchema)
             print(blogsDF.schema)
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             }
            }

Not surprisingly, the output from the Scala program is no different than the one from
Python.

()+---+---------+-------+-----------------+---------+-----
+----------------------------+
            |Id |First |Last |Url |Published|Hits |Campaigns |
            +---+---------+-------+-----------------+---------+-----
+----------------------------+
            |1 |Jules |Damji |https://tinyurl.1|1/4/2016 |4535 |[twitter, 
LinkedIn] |
            |2 |Brooke |Wenig |https://tinyurl.2|5/5/2018 |8908 |[twitter, 
LinkedIn] |
            |3 |Denny |Lee |https://tinyurl.3|6/7/2019 |7659 |[web, twitter, 
FB, LinkedIn]|
            |4 |Tathagata|Das |https://tinyurl.4|5/12/2018|10568|[twitter, FB] |
            |5 |Matei |Zaharia|https://tinyurl.5|5/14/2014|40578|[web, twitter, 
FB, LinkedIn]|
            |6 |Reynold |Xin |https://tinyurl.6|3/2/2015 |25568|[twitter, 
LinkedIn] |
            +---+---------+-------+-----------------+---------+-----
+----------------------------+
            root
             |-- Id: integer (nullable = true)
             |-- First: string (nullable = true)
             |-- Last: string (nullable = true)
             |-- Url: string (nullable = true)
             |-- Published: string (nullable = true)
             |-- Hits: integer (nullable = true)
             |-- Campaigns: array (nullable = true)
             | |-- element: string (containsNull = true)
            StructType(StructField(“Id”,IntegerType,true), 
             StructField(“First”,StringType,true), 
             StructField(“Last”,StringType,true), 
             StructField(“Url”,StringType,true),
             StructField(“Published”,StringType,true), 
             StructField(“Hits”,IntegerType,true),
             StructField(“Campaigns”,ArrayType(StringType,true),true))

We hope that you now have an intuition for using structured data and schema in
DataFrames. Now, let’s focus on DataFrames columns and rows, and what it means
to operate on them with the DataFrame API.

Columns and Expressions
As mentioned before, named columns in DataFrames are conceptually similar to
named columns in pandas or R DataFrames or an RDBMS table: They describe the
type of field. On their values, you can perform some operations using relational or
computational expressions; you can list all columns by their names. But more impor‐
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tantly, in Spark’s supported languages, columns are like objects with public methods.
As such you can manipulate column values with expressions, or a series of mathe‐
matical computations.

You can also use expressions on columns of other Spark data types as well. For exam‐
ple, you create a simple expression using the expr(“columnName * 5”) or (expr(“col‐
umnName - 5”) > col(anothercolumnName)). Expr is part of the
pyspark.sql.functions and org.apache.spark.sql.functions package. Like any other
function in that package, expr is like a function taking arguments that Spark will
parse as an expression and compute its result. We show some expr examples below.

All three languages Scala 14, Java15, and Python16 have public methods associated with
columns.

Note: The Spark documentation refers to both Col and Column. Column is the name
of the object, but you can also abbreviate it as col. More importantly, Spark needs to
understand whether you are working with a DataFrame Column type, not a string.
For brevity, we shall use col in the book.

// In Scala 
          import org.apache.spark.sql.functions.{col, expr}
          blogsDF.columns
          Array[String] = Array(Campaigns, First, Hits, Id, Last, Published, 
Url)
          // access a particular column
          blogsDF.col("Id")
          // use an expression to compute a value
          blogsDF.select(expr("Hits * 2")).show(2)
          // or use col to compute value
          blogsDF.select(col("Hits") * 2).show(2)
          +----------+
          |(Hits * 2)|
          +----------+
          | 9070|
          | 17816|
          +----------+
          // use expression to compute big hitters for blogs
          // this adds a new column Big Hitters based on the conditional expres-
sion
          blogsDF.withColumn("Big Hitters", (expr("Hits > 10000"))).show()
          +---+---------+-------+-----------------+---------+-----
+--------------------+------------+
          | Id| First| Last| Url|Published| Hits| Campaigns|Big Hitters|
          +---+---------+-------+-----------------+---------+-----
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+--------------------+------------+
          | 1| Jules| Damji|https://tinyurl.1| 1/4/2016| 4535| [twitter, 
LinkedIn]| false|
          | 2| Brooke| Wenig|https://tinyurl.2| 5/5/2018| 8908| [twitter, 
LinkedIn]| false|
          | 3| Denny| Lee|https://tinyurl.3| 6/7/2019| 7659|[web, twitter, 
FB...| false|
          | 4|Tathagata| Das|https://tinyurl.4|5/12/2018|10568| [twitter, FB]| 
true|
          | 5| Matei|Zaharia|https://tinyurl.5|5/14/2014|40578|[web, twitter, 
FB...| true|
          | 6| Reynold| Xin|https://tinyurl.6| 3/2/2015|25568| [twitter, 
LinkedIn]| true|
          +---+---------+-------+-----------------+---------+-----
+--------------------+------------+
          // use expression to concatenate three columns, create a new column
          // and show the newly created concatenated column
          blogsDF.withColumn("AuthorsId", (concat(expr("First"), expr("Last"), 
expr("Id")))).select(expr("AuthorsId")).show(n=4)
          +-------------+
          | AuthorsId|
          +-------------+
          | JulesDamji1|
          | BrookeWenig2|
          | DennyLee3|
          |TathagataDas4|
          +-------------+

// And these three statements return the same value, showing that

// expr are same as column method call
          blogsDF.select(expr("Hits")).show(2)
          blogsDF.select(col("Hits")).show(2)
          blogsDF.select("Hits").show(2)
          +-----+
          | Hits|
          +-----+
          | 4535|
          | 8908|
          +-----+
          // Sort by column "Id" in descending order
          blogsDF.sort(col("Id").desc).show()
          blogsDF.sort($"Id".desc).show()
          +--------------------+---------+-----+---+-------+---------
+-----------------+
          | Campaigns| First| Hits| Id| Last|Published| Url|
          +--------------------+---------+-----+---+-------+---------
+-----------------+
          | [twitter, LinkedIn]| Reynold|25568| 6| Xin| 3/2/2015|https://
tinyurl.6|
          |[web, twitter, FB...| Matei|40578| 5|Zaharia|5/14/2014|https://
tinyurl.5|
          | [twitter, FB]|Tathagata|10568| 4| Das|5/12/2018|https://tinyurl.4|
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          |[web, twitter, FB...| Denny| 7659| 3| Lee| 6/7/2019|https://tinyurl.
3|
          | [twitter, LinkedIn]| Brooke| 8908| 2| Wenig| 5/5/2018|https://
tinyurl.2|
          | [twitter, LinkedIn]| Jules| 4535| 1| Damji| 1/4/2016|https://
tinyurl.1|
          +--------------------+---------+-----+---+-------+---------
+-----------------+

Both these expressions—blogs_df.sort(col(“Id”).desc) and blogsDF.sort($"Id”.desc)—
above are identical. That is, they sort the DataFrame column name “Id” in a descend‐
ing order: one uses an explicit function col(“Id”), while the other uses “$” before the
name of the column, which is a function in Spark that converts it to column.

Note: We have only scratched the surface and employed a couple of methods on Col‐
umn object. For a complete list of all public methods for Column object, we refer you
to the Spark documentation.17

Column objects in a DataFrame can’t exist in isolation; each column is part of a row
in a record; and all rows constitute an entire DataFrame, which as we will see later in
the chapter is really a Dataset[Row] in Scala.

Rows
A row in Spark is a generic Row object, containing one or more columns. And each
column may be of the same data type (Integer or String) or distinct with different
types (Integer, String, Map, Array, etc.). Because Row is an object in Spark and an
ordered collection of fields, you can instantiate a Row in each of Spark’s supported
languages and access its fields by an index starting at 0. 18 19

// In Scala
          import org.apache.spark.sql.Row
          // create a Row
          val blogRow = Row(6, "Reynold", "Xin", "https://tinyurl.6", 255568, 
"3/2/2015", Array("twitter", "LinkedIn"))
          // access using index for individual items
          blogRow(1)
          res62: Any = Reynold
          # In Python
          from pyspark.sql import Row
          blog_row = Row(6, "Reynold", "Xin", "https://tinyurl.6", 255568, 
"3/2/2015", ["twitter", "LinkedIn"])
          # access using index for individual items
          blog_rowr[1]
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          'Reynold'
          Row objects can be used to create DataFrames if you need them for 
quick interactivity and exploration. 
          # In Python 
          from pyspark.sql import Row
          from pyspark.sql.type import *
          # using DDL String to define a schema
          schema = "`Author` STRING, `State` STRING"
          rows = [Row("Matei Zaharia", "CA"), Row("Reynold Xin", "CA")]
          authors_df = spark.createDataFrame(rows, schema)
          authors_df.show()
          // In Scala
          import org.apache.spark.sql.Row
          import org.apache.spark.sql.types._
          val rows = Seq(("Matei Zaharia", "CA"), ("Reynold Xin", "CA"))
          val authorsDF = rows.toDF(“Author”, “State”) 
          authorsDF.show()
          +-------------+-----+
          | Author|State|
          +-------------+-----+
          |Matei Zaharia| CA|
          | Reynold Xin| CA|
          +-------------+-----+

Even though we demonstrated a quick way to create DataFrames from Row objects,
in practice, you will want to read them from a file as illustrated earlier. In most cases,
because your files are going to be huge, defining a schema and using it is a quicker
and more efficient way to create DataFrames.

After you have created a large distributed DataFrame, you are going to want to per‐
form some common data operations on them. Let’s examine some of these Spark
operations with high-level relational operators in the Structured APIs.

Common DataFrame Operations
To perform common data operations on a DataFrame, you’ll first need to load a
DataFrame from a data source that holds your structured data. Spark provides an
interface, DataFrameReaders 20 to read data into a DataFrame from myriad data sour‐
ces and formats such as JSON, CSV, Parquet, Text, Avro, ORC etc. Likewise, to write
back the DataFrame to a data source in a particular format, Spark uses DataFrame‐
Writer 21.
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22 This public data is available at https://data.sfgov.org/Public-Safety/Fire-Incidents/wr8u-xric/data

DataFrameReader and DataFrameWriter .    Reading and writing is much simpler in Spark
2.x because of these high-level abstraction and contributions from the community to
connect to myriad data sources, including common NoSQL stores, RDMS, streaming
engines (Apache Kafka and Kinesis), etc.

To begin with a data source, let’s read a large CSV file containing San Francisco fire
calls.22 As noted above, we will define a schema for this file and use DataFrameReader
class and its methods to instruct Spark what to do. Because this file contains 28 col‐
umns and over 4,380,660 records, it’s more efficient to define a schema than have
Spark infer it.

Hint: If you don’t want to specify the schema, Spark can infer schema from a sample
at a lesser cost. For example you can use the sampleRatio option.

// In Scala
          val sampleDF = spark.read
           .option("samplingRatio",0.001)
           .option("header", "true")
           .csv("path_to_csv_file")

Note: The original data set has over 60 columns. We dropped a few unnecessary col‐
umns for this example. For example, some dates had null and or invalid values.

# In Python define a schema 
          from pyspark.sql.types import *
          # Programmatic way to define a schema 
          fire_schema = StructType([StructField('CallNumber', IntegerType(), 
True),
           StructField('UnitID', StringType(), True),
           StructField('IncidentNumber', IntegerType(), True),
           StructField('CallType', StringType(), True), 
           StructField('CallDate', StringType(), True), 
           StructField('WatchDate', StringType(), True),
           StructField('CallFinalDisposition', StringType(), True),
           StructField('AvailableDtTm', StringType(), True),
           StructField('Address', StringType(), True), 
           StructField('City', StringType(), True), 
           StructField('Zipcode', IntegerType(), True), 
           StructField('Battalion', StringType(), True), 
           StructField('StationArea', StringType(), True), 
           StructField('Box', StringType(), True), 
           StructField('OriginalPriority', StringType(), True), 
           StructField('Priority', StringType(), True), 
           StructField('FinalPriority', IntegerType(), True), 
           StructField('ALSUnit', BooleanType(), True), 
           StructField('CallTypeGroup', StringType(), True),
           StructField('NumAlarms', IntegerType(), True),
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           StructField('UnitType', StringType(), True),
           StructField('UnitSequenceInCallDispatch', IntegerType(), True),
           StructField('FirePreventionDistrict', StringType(), True),
           StructField('SupervisorDistrict', StringType(), True),
           StructField('Neighborhood', StringType(), True),
           StructField('Location', StringType(), True),
           StructField('RowID', StringType(), True),
           StructField("Delay", FloatType(), True)])
          # read the file using DataFrameReader using format CSV
          sf_fire_file = "databricks-datasets/learning-spark-v2/sf-fire/sf-fire-
calls.csv"
          fire_df = spark.read.csv(sf_fire_file, header=True, 
schema=fire_schema)
          // In Scala it would be similar
          val fileSchema = StructType(Array(StructField("CallNumber", Integer-
Type, true),
           StructField("UnitID", StringType, true),
           StructField("IncidentNumber", IntegerType, true),
           StructField("CallType", StringType, true), 
           StructField("Location", StringType, true)),
           …
           …
           StructField("Location", StringType, true)),
           StructField("Delay", FloatType, true)))
          // read the file using the CSV DataFrameReader
          val sfFireFile = "databricks-datasets/learning-spark-v2/sf-fire/sf-
fire-calls.csv"
          val fireDF = spark.read.schema(fireSchema)
           .option("header", "true")
           .csv(sfFireFile)

The code spark.read.csv creates a DataFrameReader object to read a CSV file type
DataSource and reads the file according to the schema supplied. With success, it
returns a DataFrame of rows and named columns with their respective types, as dic‐
tated in the schema.

Using a DataFrameWriter, you can do one of two things. First, write the DataFrame
as another format into an external data source. As with DataFrameReader, DataFra‐
meWriter supports multiple data sources. 23 24 Parquet, a popular columnar format, is
the default format and it uses compression to store the data. And second, if written as
Parquet, it preserves the schema as part of the Parquet metadata. Subsequent reads
back into DataFrame do not require to manually supply a schema.

Saving DataFrame as Parquet File Format and SQL Table .    Another common data opera‐
tion is to explore and transform data, and then persist the file as Parquet or save it as

22 | Chapter 1: Apache Spark’s Structured APIs

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameWriter
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.DataFrameWriter


a SQL table. Persisting a transformed DataFrame is as easy as reading it. For example,
to persist the above DataFrame both as a file and table immediately after reading is
simple:

// In Scala to save as a parquet file or Table 
          val parquetPath = …
          fireDF.write
           .format("parquet")
           .save(parquetPath)

Alternatively, you can save it as a table, which registers metadata with the Hive meta‐
store (we will cover SQL managed and unmanaged tables, metastores, and Data‐
Frames in the next chapter).

// In Scala to save as a parquet file or Table 
          val parquetTable = … //name of the table
          fireDF.write
           .format("parquet")
           .saveAsTable(parquetTable)
          # In Python
          parquet_table = … # name of the table
          (fire_df.write
           .format("parquet")
           .saveAsTable(parquetTable))

Let’s walk through common data operations on DataFrames after you have read the
data.

Transformations & Actions .    Now that we have an entire distributed DataFrame com‐
posed of SF Fire department calls in memory, the first thing you as a data engineer or
data scientist will want to do is examine your data: see what the columns look like.
That is, are they of the correct data type? Do they need conversion to the right data
type? Do they have null values etc.

In Chapter 2 (see section on Transformation, actions, and Lazy evaluations), you got
a glimpse on some transformations and actions as high-level API and Domain Spe‐
cific Language (DSL) operators on DataFrames. What can we find out from our San
Francisco Fire calls?

Projections and Filters .    A projection in the relational parlance is the ability to select all
or individual rows matching a certain relational condition, by using filters. In Spark,
projections equate to the select() method, while filter can be expressed as filter() or
where() methods. Let’s use both these methods to examine parts of our SF Fire inci‐
dents.

# In Python
          few_fire_df = (fire_df.select("IncidentNumber", "AvailableDtTm", 
"CallType") 
           .where(col("CallType") != "Medical Incident"))
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          few_fire_df.show(5, truncate=False)
          // In Scala
          val fewFireDF = fireDF.select("IncidentNumber", "AvailableDtTm", 
"CallType")
           .where($"CallType" =!= "Medical Incident")
          fewFireDF.show(5, false)
          This code gives us the following output:
          +--------------+----------------------+----------------+
          |IncidentNumber|AvailableDtTm |CallType |
          +--------------+----------------------+----------------+
          |2003234 |01/11/2002 01:58:43 AM|Medical Incident|
          |2003233 |01/11/2002 02:10:17 AM|Medical Incident|
          |2003235 |01/11/2002 01:47:00 AM|Structure Fire |
          |2003235 |01/11/2002 01:51:54 AM|Structure Fire |
          |2003235 |01/11/2002 01:47:00 AM|Structure Fire |
          +--------------+----------------------+----------------+
          (only showing top 5 rows)

However, what if you are only interested in distinct CallTypes as the causes of the fire
calls, and you want to count the total. These simple and expressive queries do the job:

# In Python, return the count using the action distinctCount()
          fire_df.select("CallType").where(col("CallType") != "null").distinct-
Count()
          # filter for only distinct non-null CallTypes from all the rows
          fire_df.select("CallType").where(col("CallType") != "null").dis-
tinct().show(10, False)
          // In Scala, return the count using the action count()
          fireDF.select("CallType").where(col("CallType") =!= "null").dis-
tinct().count()
          // In Scala, filter for only distinct non-null CallTypes from all the 
rows
          fireDF.select("CallType").where($"CallType" =!= lit("null")).dis-
tinct().show(10, false)

This code returns the output of 32 distinct call types for the fire calls.

Out[20]: 32
          +-----------------------------------+
          |CallType |
          +-----------------------------------+
          |Elevator / Escalator Rescue |
          |Marine Fire |
          |Aircraft Emergency |
          |Confined Space / Structure Collapse|
          |Administrative |
          |Alarms |
          |Odor (Strange / Unknown) |
          |Lightning Strike (Investigation) |
          |Citizen Assist / Service Call |
          |HazMat |
          +-----------------------------------+
          (only showing top 10 rows)
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Renaming, Adding or Dropping Columns, and Aggregating .    Sometimes you wish to
rename particular columns for reasons of style or conventions; other times for read‐
ability or brevity. Our original column names in the SF Fire calls file had spaces in
them. For example, the column “IncidentNumber” was “Incident Number.” In fact,
all columns had spaces in them, which can be problematic, especially when you wish
to write or save a DataFrame as a Parquet file (which prohibits spaces in column
names).

By specifying the desired column name in the schema StructField, as we did, we effec‐
tively changed the ultimate name in the returning DataFrame for all our column
names.

Alternatively, you could selectively rename columns with DataFrame’s public with‐
ColumnRenamed() method. For instance, let’s change our Delay column to Respon‐
seDelayedinMin and issue the count query again.

# In Python
          new_fire_df = fire_df.withColumnRenamed("Delay", "ResponseDelayedin-
Mins")
          new_fire_df.select("ResponseDelayedinMins").where(col("ResponseDelaye-
dinMins") > 5).show(5, False)
          // In Scala
          val newFireDF = fireDF.withColumnRenamed("Delay", "ResponseDelayedin-
Mins")
          newFireDF.select("ResponseDelayedinMins").where($"ResponseDelayedin-
Mins" > 5).show(5, false)

This gives us a new renamed column:

+---------------------+
          |ResponseDelayedinMins|
          +---------------------+
          |5.233333 |
          |6.9333334 |
          |6.116667 |
          |7.85 |
          |77.333336 |
          +---------------------+
          (only showing top 5 rows)

Note: Because DataFrame transformations are immutable, in both the above queries,
when we rename a column, we get a new DataFrame while retaining the original with
the old column name.

Modifying the contents of a column or its type is often a common data operation
during exploration. In some cases, the data is raw or dirty, or its types are not amena‐
ble to supply as arguments to relational operators. For example, in our SF Fire calls
data set, the columns “CallDate”, “WatchDate”, and “AlarmDtTm” are strings rather
than either Unix timestamp or SQL Date, which Spark supports and Spark can easily
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manipulate during transformations or actions, especially during a date or time analy‐
sis of your data.

So how do we convert them into a more usable format? It’s quite simple with a set of
high-level API methods.

spark.sql.function has a set of to/from date/timestamp functions such as to_time‐
stamp() or to_date().

# In Python 
          fire_ts_df = (fire_df.withColumn("IncidentDate", to_time-
stamp(col("CallDate"), "MM/dd/yyyy")).drop("CallDate") 
           .withColumn("OnWatchDate", to_timestamp(col("WatchDate"), "MM/dd/
yyyy")).drop("WatchDate") 
           .withColumn("AvailableDtTS", to_timestamp(col("AvailableDtTm"), 
"MM/dd/yyyy hh:mm:ss aa")).drop("AvailableDtTm"))
          # select the converted columns
          fire_ts_df.select("IncidentDate", "OnWatchDate", "Availa-
bleDtTS").show(5, False)
          // In Scala
          val fireTsDF = fireDF.withColumn("IncidentDate", to_time-
stamp(col("CallDate"), "MM/dd/yyyy")).drop("CallDate")
           .withColumn("OnWatchDate", to_timestamp(col("WatchDate"), "MM/dd/
yyyy")).drop("WatchDate") 
           .withColumn("AvailableDtTS", to_timestamp(col("AvailableDtTm"), 
"MM/dd/yyyy hh:mm:ss aa")).drop("AvailableDtTm") 
          // select the converted columns
          fireTsDF.select("IncidentDate", "OnWatchDate", "Availa-
bleDtTS").show(5, false)

The query above packs quite a punch. A number of things are happening. Let’s
unpack them:

Convert the existing column’s data type from string to a Spark supported timestamp.

Use the new format as specified in the format string “MM/dd/yyyy” or “MM/dd/yyyy
hh:mm:ss aa” where appropriate.

After converting to new data type, drop() the old column, and append the new one
specified in the first argument to withColumn() method.

Assign the new modified DataFrame to fire_ts_df

This query results in new columns:

+-------------------+-------------------+-------------------+
          |IncidentDate |OnWatchDate |AvailableDtTS |
          +-------------------+-------------------+-------------------+
          |2002-01-11 00:00:00|2002-01-10 00:00:00|2002-01-11 01:58:43|
          |2002-01-11 00:00:00|2002-01-10 00:00:00|2002-01-11 02:10:17|
          |2002-01-11 00:00:00|2002-01-10 00:00:00|2002-01-11 01:47:00|
          |2002-01-11 00:00:00|2002-01-10 00:00:00|2002-01-11 01:51:54|
          |2002-01-11 00:00:00|2002-01-10 00:00:00|2002-01-11 01:47:00|
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          +-------------------+-------------------+-------------------+
          (only showing top 5 rows)

Now that we have modified the dates, we can query using spark.sql.functions like
mon(), year(), day() etc., for instance, to explore our data further. Let’s calculate all
the years data of fire calls in our data set. We can also ask how many calls were logged
in the last seven days.

# In Python 
          fire_ts_df.select(year('IncidentDate')).distinct().orderBy(year('Inci-
dentDate')).show()
          // In Scala
          fireTSDF.select(year($"IncidentDate")).distinct().orderBy(year($"Inci-
dentDate")).show()

This query gives us all the years up to 2018 in this data set:

+------------------+
          |year(IncidentDate)|
          +------------------+
          | 2000|
          | 2001|
          | 2002|
          | 2003|
          | 2004|
          | 2005|
          | 2006|
          | 2007|
          | 2008|
          | 2009|
          | 2010|
          | 2011|
          | 2012|
          | 2013|
          | 2014|
          | 2015|
          | 2016|
          | 2017|
          | 2018|
          +------------------+

So far in this section, we have explored a number of concepts: DataFrameReaders and
DataFrameWriters; defining a schema and using it in the DataFrame readers; saving
a DataFrame as a Parquet file or table; projecting and filtering selected columns from
an existing DataFrame; and modifying, renaming, and dropping some columns—all
common data operations.

One final common operation is grouping data by values in a column, and aggregating
the data in some way, like simply counting it. This pattern of grouping and counting
is as common as projecting and filtering. Let’s have a go at it.
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Aggregations .    What if we want to ask the question what were the common types of
fire calls? And another question: what ZIP codes accounted for most of the fire calls?
All these are common patterns of data analysis and exploration.

A handful of transformations and actions on DataFrame such as groupBy(),
orderBy() and count() offer the ability to aggregate by column names and then aggre‐
gate count across them. 25

For larger DataFrames on which you plan to conduct frequent or repeated queries,
you could benefit from caching a DataFrame. We will cover DataFrames caching
strategies and their benefits in later chapters.

Caution: Also, for extremely large DataFrames, collect() is dangerous and resource-
heavy (expensive), as it can cause Out of Memory (OOM) exceptions. Unlike count(),
which returns a single number to the driver, collect() returns a collection of all the
Row objects back to the driver. Instead, to take a peek at some Row records, you’re
better off with take(n), where n will return only the first n Row objects of the Data‐
Frame.

Let’s take our first question: what were the common types of fire calls?

# In Python
          fire_ts_df.select("CallType").where(col("CallType").isNot-
Null()).groupBy("CallType").count().orderBy("count", ascend-
ing=False).show(n=10, truncate=False)
          // In Scala 
          fireTSDF.select("CallType").where(col("CallType").isNot-
Null).groupBy("CallType").count().orderBy(desc("count")).show(10, false)

Both produce the following output:

+-------------------------------+-------+
          |CallType |count |
          +-------------------------------+-------+
          |Medical Incident |2843475|
          |Structure Fire |578998 |
          |Alarms |483518 |
          |Traffic Collision |175507 |
          |Citizen Assist / Service Call |65360 |
          |Other |56961 |
          |Outside Fire |51603 |
          |Vehicle Fire |20939 |
          |Water Rescue |20037 |
          |Gas Leak (Natural and LP Gases)|17284 |
          +-------------------------------+-------+
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From the above, we can conclude that the most common call type is medical inci‐
dent.

Other Common DataFrame Operations .    Along with the above, DataFrames provide
descriptive statistical methods like min(), max(), sum(), avg(), etc. Here are some
examples showing how to compute them with our SF Fire calls data set.

Let’s compute the sum of alarms, the average response time, and the min and max
response time to all fire calls in our dataset.

# In Python
          fire_ts_df.select(sum("NumAlarms"), avg("ResponseDelayedinMins"), 
min("ResponseDelayedinMins"), max("ResponseDelayedinMins")).show()
          // In Scala
          fireTSDF.select(sum("NumAlarms"), avg("ResponseDelayedinMins"), 
min("ResponseDelayedinMins"), max("ResponseDelayedinMins")).show()

Both queries generate the following output:

+--------------+--------------------------+--------------------------
+--------------------------+
          |sum(NumAlarms)|avg(ResponseDelayedinMins)|min(ResponseDelayedinMins)|
max(ResponseDelayedinMins)|
          +--------------+--------------------------+--------------------------
+--------------------------+
          | 4403441| 3.902170335891614| 0.016666668| 1879.6167|
          +--------------+--------------------------+--------------------------
+--------------------------+

For more advanced statistics, common with data science workloads, read the Data‐
Frame documentation for methods like stat(), describe(), correlation(), covariance(),
sampleBy(), approxQuantile(), frequentItems() etc.

As you can see, it’s easy to compose and chain expressive queries with DataFrames’
high-level API and DSL operators. We can’t imagine the opacity and readability of
the code if we were to do the same with RDDs!

End-to-End DataFrame Example
In this end-to-end example we conduct exploratory data analysis, ETL (extract, trans‐
form, and load), and common data operations, above and beyond what we shared
above on the San Francisco 2018 Fire calls public data set.

For brevity, we won’t include the entire example code here. However, we have fur‐
nished links to both Python and Scala Databricks Community Edition Notebooks for
you to try. In short, the notebooks explore and answer the following common ques‐
tions you might ask of this dataset. Using DataFrames APIs and DSL relational oper‐
ators, we can answer:

What were all the different types of fire calls in 2018?
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What months within the year 2018 saw for the highest number of fire calls?

Which neighborhood in SF generated the most fire calls in 2018?

Which neighborhoods in SF had the worst response time to fire calls in 2018?

Which week in the year in 2018 had the most fire calls?

Is there a correlation between neighborhood, zip code, and fire calls?

How can we use Parquet files or SQL tables to store this data and read it back?

Import the complete Python or Scala notebook from the Learning Spark 2nd GitHub.

So far we have extensively discussed DataFrames as one of the Structured APIs that
span Spark’s components (MLlib and Structured Streaming, which we cover later in
the book).

Let’s shift our focus to the Dataset API. Let’s explore how Dataset and DataFrame
APIs provide a unified, structured interface to developers to program Spark. Let’s
examine the relationship between RDDs, DataFrames, and Datasets APIs. And, let’s
determine when to use which API and why.

Datasets API
Apache Spark 2.0 introduced a structured API. Its primary goal was to simplify Data‐
Frame and Dataset APIs so that you as a developer only have to grapple with one set
of APIs. 26 27 LIke RDD, Datasets are language-native type classes and objects in Scala
and Java, whereas DataFrames lose that characteristic. Foundational in their API
types, Dataset takes on two characteristics: strongly-typed and untyped APIs, as
shown in Figure 3-1.

Conceptually, consider DataFrame as an alias for a collection of generic objects Data‐
set[Row], where a Row is a generic typed JVM object, which may hold different types
of fields. Dataset, by contrast, is a collection of strongly-typed JVM objects in Scala or
a class in Java. Put another way, Datasets are a “strongly-typed collection of domain-
specific objects that can be transformed in parallel using functional or relational
operations. Each Dataset [in Scala] also has an untyped view called a DataFrame,
which is a Dataset of Row.” 28
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Figure 1-1. Structured APIs in Apache Spark

Typed Objects, Untyped Objects, and Generic Rows .    In Spark’s supported languages, only
Dataset exists in Java and Scala, whereas in Python and R, only DataFrames APIs
make sense. There are a few reasons for this. First, these languages are not compile-
time type-safe; types are dynamically inferred or assigned during execution, not dur‐
ing compile time. And second, typed-object in Scala or Java is a characteristic of a
Java Virtual Machine (JVM); types to objects or variables are bound at compile time,
not during execution time. Our Table 3-6 distills it in a nutshell.

Language Typed and Untyped Main Abstraction Typed or Untyped

Scala Dataset[T] & DataFrame (alias for Dataset[Row]) Both typed and untyped

Java Dataset<T> Typed

Python DataFrame Generic Row Untyped

R DataFrame Generic Row Untyped

Table 3-6 Typed and Untyped Objects in Spark

Row is a generic object type in Spark, holding a collection of mixed types that can be
accessed using an index. Internally, Spark manipulates Row objects, converting them
to equivalent Spark types covered in Tables 3.4 and 3.5. For example, an Int as one of
your fields in a Row will be mapped or converted to IntegerType or IntegerType()
respectively for Scala or Java and Python.

// In Scala
          import org.apache.spark.sql.Row 
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          val row = Row(350, true, "Learning Spark 2E", null)
          # In Python
          From pyspark.sql import Row
          row = Row(350, True, "Learning Spark 2E", None)
          Returns into val 
          row: org.apache.spark.sql.Row = [350,true,Learning Spark 2E,null]

Using index into the Row object, you can access individual fields using Row’s public
getter methods.

// In Scala
          row.getInt(0)
          row.getBoolean(1)
          row.getString(2)

Returning these values:

res23: Int = 350
          res24: Boolean = true
          res25: String = Learning Spark 2E
          # In Python
          row[0]
          row[1]
          row[2]

Returning values:

Out[13]: 350
          Out[14]: True
          Out[15]: 'Learning Spark 2E'

By contrast, typed objects are actual Java or Scala class objects in the JVM. Each ele‐
ment in a Dataset maps to a JVM object.

Creating Datasets
As with creating DataFrames from data sources, you have to know a schema. In other
words, you need to know the data types so that you can define your schema.
Although for JSON and CSV, you can infer the schema, for large datasets inferring
schema is resource-intensive (expensive). The easiest way to specify the schema of the
resulting Dataset in Scala is to use case classes, which can be introspected to deter‐
mine its schema. In Java, JavaBean classes are used (we discuss JavaBeans and case
classes in chapter 6).

Scala: Case Classes .    When you wish to instantiate your own domain-specific object as
a Dataset, you can do so by defining a case class in Scala. As an example, let’s look at
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a collection of internet of devices in a JSON file (We use this file in the end-to-end
example below).29

Our file has rows of JSON strings that look as follows:

{"device_id": 198164, "device_name": "sensor-pad-198164owomcJZ", "ip": 
"80.55.20.25", "cca2": "PL", "cca3": "POL", "cn": "Poland", "latitude": 
53.080000, "longitude": 18.620000, "scale": "Celsius", "temp": 21, "humidity": 
65, "battery_level": 8, "c02_level": 1408, "lcd": "red", "timestamp" :
1458081226051}

To express each JSON entry as DeviceIoTData, a domain-specific object, define a
Scala case class:

case class DeviceIoTData (battery_level: Long, c02_level: Long, 
              cca2: String, cca3: String, cn: String, device_id: Long, 
              device_name: String, humidity: Long, ip: String, latitude: Double,
               lcd: String, longitude: Double, scale:String, temp: Long, 
              timestamp: Long)

Once defined, we can use it to read our file and convert the returned Dataset[Row]
into Dataset[DeviceIoTData]

// In Scala
              val ds = spark.read.json("/databricks-datasets/learning-spark-v2/
iot-devices/iot_devices.json").as[DeviceIoTData]
              ds: org.apache.spark.sql.Dataset[DeviceIoTData] = [battery_level: 
bigint, c02_level: bigint ... 13 more fields]
              ds.show(5, false)

Datasets Operations
Just as you can perform transformations and actions on DataFrames, so can you on
Datasets. Depending on the kind of operations, the results type will vary.

// In Scala
            Val filterTempDS = ds.filter(d => {d.temp > 30 && d.humidity > 70})
            filterTempDS: org.apache.spark.sql.Dataset[DeviceIoTData] = [bat-
tery_level: bigint, c02_level: bigint ... 13 more fields]
            filterTempDs.show(5, false)
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Note: In the query above, we used a function as a argument to the Dataset method
filter() because the method is overloaded with many signatures. This method usage
filter(func: (T) ⇒ Boolean): Dataset[T] takes a lambda function: func: (T) ⇒ Boolean
as its argument.

One thing is quite simple and clear from the above query: filter() method can take a
lambda function in Scala. The argument to the lambda function is a JVM object of
type DeviceIoTData. As such, we can access its individual data fields using the “.”
notation, like you would in a Scala class or JavaBean.

Another thing to note is that with DataFrames, you express your filter() conditions as
SQL-like DSL operations, which are language agnostic, as we saw above in our Fire
calls example. In Dataset, these operations use language-native expressions as Scala
or Java code.

Here’s another example that results into another smaller Dataset.

// In Scala
            case class DeviceTempByCountry(temp: Long, device_name: String, 
device_id: Long, cca3: String)
            val dsTemp = ds.filter(d => {d.temp > 25})
             .map(d => (d.temp, d.device_name, d.device_id, d.cca3))
             .toDF("temp","device_name","device_id","cca3")
             .as[DeviceTempByCountry]
            dsTemp.show(5, false)
            +----+---------------------+---------+----+
            |temp|device_name |device_id|cca3|
            +----+---------------------+---------+----+
            |34 |meter-gauge-1xbYRYcj |1 |USA |
            |28 |sensor-pad-4mzWkz |4 |USA |
            |27 |sensor-pad-6al7RTAobR|6 |USA |
            |27 |sensor-pad-8xUD6pzsQI|8 |JPN |
            |26 |sensor-pad-10BsywSYUF|10 |USA |
            +----+---------------------+---------+----+
            only showing top 5 rows

Or you can inspect only the first row of your Dataset.

val device = dsTemp.first()
            print(device)
            DeviceTempByCountry(34,meter-gauge-1xbYRYcj,1,USA)device: Device-
TempByCountry = DeviceTempByCountry(34,meter-gauge-1xbYRYcj,1,USA)
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Alternatively, you could express the same query using column names and then cast to
a Dataset[DeviceTempByCountry].

// In Scala
            val dsTemp2 = ds.select($"temp", $"device_name", $"device_id", 
$"device_id", $"cca3").where("temp > 25").as[DeviceTempByCountry]

Tip: Semantically, select() is like map() in the above queries. In that, both these quer‐
ies select fields and generate equivalent results.

To recap, the operations—filter(), map(), groupBy(), select(), take(), etc—on Datasets
are similar to the ones on DataFrames. In a way, Datasets are similar to RDDs in that
they provide a similar interface to its aforementioned methods and compile-time
safety but with a much easier to read and an object-oriented programming interface.

When using Datasets, the underlying Spark SQL engine does all the creation, conver‐
sion, serialization and deserialization of JVM objects, and off-Java heap memory
management with the help of Dataset Encoders.30 31 (We will cover more about Data‐
sets and memory management in chapter 6.)

End-to-End Dataset Example
In this end-to-end Dataset example we conduct similar exploratory data analysis,
ETL (extract, transform, and load), and perform common data operations on IoT
dataset. Although the dataset is small and fake , we want to illustrate the readability
and clarity with which you can express a query with Datasets, just as we did with
DataFrames.

For brevity, we won’t include the entire example code here. However, we have fur‐
nished links to a Databricks Community Edition Notebook for you to try. In short,
the notebook explores following common operations you might conduct for this
dataset. Using Dataset’s structured API, we attempt the following:

detect failing devices with low battery below a threshold;

identify offending countries with high-levels of C02 emissions;

compute the min and max values for temperature, battery_level, C02, and humidity;
and

sort and group by average temperature, C02, humidity, and country

For a complete Scala notebook, import the notebook from the Learning Spark Git‐
Hub link.

Structured APIs: DataFrames and Datasets APIs | 35

https://databricks.com/session/deep-dive-apache-spark-memory-management
https://www.youtube.com/watch?v=-Aq1LMpzaKw


32 https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-
datasets.html

33 https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html

34 https://databricks.com/session/demystifying-dataframe-and-dataset

35

DataFrames vs Datasets
By now you may be asking why and when should I use DataFrames or Datasets. The
reasons are handful, and here are a few notable ones 32 33:

If you want rich semantics, high-level abstractions, and domain specific language
operators, use DataFrame or Dataset.

If you want strict compile type safety and don’t mind creating multiple case classes
for specific Dataset[T], use Dataset.

If your processing demands high-level expressions, filters, maps, aggregation, aver‐
ages, sum, SQL queries, columnar access and use of relational operators on semi-
structured data, use DataFrame or Dataset.

If your processing dictates relational transformation similar to SQL like queries, use
DataFrames.

If you want a higher degree of type-safety at compile time, want typed JVM objects,
take advantage of Catalyst optimization, and benefit from Tungsten’s efficient code
generation and serialization with Encoders use Dataset.34

If you want unification, code optimization, simplification of APIs across Spark Libra‐
ries, use DataFrame.35

If you are an R user, use DataFrames.

If you are a Python user, use DataFrames and at will drop down to RDDs if you need
more control.

If you want space and speed efficiency use DataFrames or Datasets.

If you want errors caught during compile time vs analysis time, choose the appropri‐
ate API as depicted in Figure 3-2.

Finally, and importantly, if you want to instruct Spark what-to-do, not how-to-do, use
DataFrame or Dataset.
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Figure 1-2. Spectrum of errors detected using Structured APIs

What about RDDs?
You may ask: Are RDDs being relegated as second class citizens? Are they being dep‐
recated? And the answer is a resounding NO!

All future development work, such as DataSource API v2 in Spark 2.x and Spark 3.0,
will continue to have a DataFrame interface and semantics rather than RDDs.

So Then When to use RDDs?
Consider these scenarios for using RDDs:

you are using a third-party package that’s written in RDD;

you can forgo code optimization, efficient space utilization, and performance benefits
available with DataFrames and Datasets; and

you want to precisely instruct Spark how-to-do a query

What’s more, you can seamlessly move between DataFrame or Dataset and RDDs at
will—by a simple API method call df.rdd. (Note that moving back-and-forth between
RDD and DataFrame has its cost and should be avoided unless necessary.) After all,
DataFrames and Datasets are built on top of RDDs, and they get decomposed to
compact RDDs code during whole-stage-code-generation (we discuss this in the next
section).

Finally, in the above sections with DataFrames, Datasets, and SQL, we got an intu‐
ition in how structure enables developers to use easy and friendly APIs to compose
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expressive queries on structured data. In other words, you instruct Spark what-to-do,
not how-to-do using high-level operations and Spark ascertains what’s the most effi‐
cient way to build a query and generate compact code for you.

This process of building the most efficient query and generating compact code is the
job of Spark SQL engine. It’s the substrate upon which the above structured APIs are
built. Let’s peek under the hood to understand Spark SQL engine.

Spark SQL and the Underlying Engine
At the programmatic level, Spark SQL allows developers to issue ANSI SQL 2003-
compatible queries to structured data with a schema. Since its introduction in Spark
1.3, Spark SQL has evolved over the Spark 2.x releases and is now a substantial engine
upon which many high-level structured functionalities have been built. Apart from
allowing you to issue SQL-like queries to your data, Spark SQL provides a few main
capabilities as shown in Figure 3-3:

Unifies Spark components and offers abstraction to DataFrames/Datasets in Java,
Scala, Python, and R, which simplifies working with structured datasets

Connects to Apache Hive metastore and tables

Reads and writes structured data with a specific schema from structured file formats
(JSON, CSV, Text, Avro, Parquet, ORC etc) and converts them into temporary tables

Offers an interactive Spark SQL shell for quick data exploration

Offers a bridge to (and from) external tools via standard database JDBC/ODBC con‐
nectors

Generates optimized query plan and compact-code for the JVM for final execution
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Figure 1-3. Spark SQL and its stack

Under the hood, the Spark SQL engine has the Catalyst Optimizer and Project Tung‐
sten36 37Together, support high-level structured DataFrame and Datasets APIs and
SQL queries. Let’s take a closer look at the Catalyst Optimizer.

Catalyst Optimizer
The Catalyst Optimizer takes a computational query, whether in SQL, DataFrame or
Dataset, and converts into an execution plan, as it undergoes four transformational
phases, as shown in Figure 3-4 38:

Analysis

Logical Plan and Optimization

Physical Planning

Code Generation

Spark SQL and the Underlying Engine | 39

https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html


Figure 1-4. Spark Computation’s Four-Phase Journey

For example, consider the DataFrame (we discuss DataFrame below) computation or
SQL query from our M&M example from Chapter 2; its queries traverse and trans‐
form across the four phases. Both sample code blocks below will eventually end up
with a similar query plan and identical byte code for execution. That is, if you write to
the Spark 2.x Structured API, regardless of the supported language, your computa‐
tion undergoes the same journey and the resulting bytecode is the same.

# In Python
        count_mnm_df = (mnm_df.select("State", "Color", "Count") 
         .groupBy("State", "Color") 
         .agg(count("Count") 
         .alias("Total")) 
         .orderBy("Total", ascending=False))
        -- In SQL
        SELECT State, Color, Count sum(Count) AS Total
        FROM MNM_TABLE_NAME
        GROUP BY State, Color, Count
        ORDER BY Total DESC

To look at the different stages of the Python code, you can use
count_mnm_df.explain(True) method on the DataFrame. (In Chapter 8, we will dis‐
cuss more about tuning and debugging Spark and how to read query plans.) This
gives us the following output:

== Parsed Logical Plan ==
        'Sort ['Total DESC NULLS LAST], true
        +- Aggregate [State#10, Color#11], [State#10, Color#11, count(Count#12) 
AS Total#24L]
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         +- Project [State#10, Color#11, Count#12]
         +- Relation[State#10,Color#11,Count#12] csv
        == Analyzed Logical Plan ==
        State: string, Color: string, Total: bigint
        Sort [Total#24L DESC NULLS LAST], true
        +- Aggregate [State#10, Color#11], [State#10, Color#11, count(Count#12) 
AS Total#24L]
         +- Project [State#10, Color#11, Count#12]
         +- Relation[State#10,Color#11,Count#12] csv
        == Optimized Logical Plan ==
        Sort [Total#24L DESC NULLS LAST], true
        +- Aggregate [State#10, Color#11], [State#10, Color#11, count(Count#12) 
AS Total#24L]
         +- Relation[State#10,Color#11,Count#12] csv
        == Physical Plan ==
        *(3) Sort [Total#24L DESC NULLS LAST], true, 0
        +- Exchange rangepartitioning(Total#24L DESC NULLS LAST, 200)
         +- *(2) HashAggregate(keys=[State#10, Color#11], func-
tions=[count(Count#12)], output=[State#10, Color#11, Total#24L])
         +- Exchange hashpartitioning(State#10, Color#11, 200)
         +- *(1) HashAggregate(keys=[State#10, Color#11], functions=[par-
tial_count(Count#12)], output=[State#10, Color#11, count#29L])
         +- *(1) FileScan csv [State#10,Color#11,Count#12] Batched: false, For-
mat: CSV, Location: InMemoryFileIndex[file:/Users/jules/gits/LearningSpark2.0/
chapter2/py/src/data/mnm_dataset.csv], PartitionFilters: [], PushedFilters: [], 
ReadSchema: struct<State:string,Color:string,Count:int>

Consider another DataFrame computation example, the below Scala code, that
undergoes a similar journey and how the underlying engine optimizes its logical and
physical plan.

// In Scala
        // Users DataFrame read from a Parquet Table
        val usersDF = …
        // Events DataFrame read from Parquet Table
        val eventsDF = ...
        // Join two DataFrames
        val joinedDF = users.join(events, users("id") === events("uid"))
         .filter(events("date") > "2015-01-01")

After going through an initial analysis phase, the query plan is transformed and rear‐
ranged by the Catalyst Optimizer as shown in the following diagram.
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Figure 1-5. An Example of a specific query transformation

Let’s go through each of the four phases of a Spark computation.

Phase 1: Analysis
In all the above code examples, Spark SQL engine will generate an Abstract Syntax
Tree (AST)39 for the SQL or DataFrame query. In this phase, any columns or table
names will be resolved by consulting an internal Catalog, a programmatic interface to
Spark SQL that holds a list of names of columns, data types, functions, tables, data‐
bases, etc. After all successful resolutions, the query proceeds to the next phase.

Phase 2: Logical Optimizations
As Figure 3-4 shows, this phase comprises two internal stages. Applying a standard-
rule based optimization, the Catalyst Optimizer will first construct a set of multiple
plans and then, using cost-based optimizer (CBO), assign costs to each plan. 40 These
plans are laid out as operator trees (like Figure 3-5); they may include, for example,
the process of constant folding, predicate pushdown, projection pruning, boolean
expression simplification, etc. 41 (More on these concepts in chapter 8). For each of
the trees, a computation cost is associated. This is the input into the physical plan.

42 | Chapter 1: Apache Spark’s Structured APIs

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2-2.html
https://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2-2.html


42 https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-
a-laptop.html

43 https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

44 https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-
a-laptop.html

Phase 3: Physical Planning
In the physical planning phase, Spark SQL picks a logical plan and generates one
physical plan, using physical operators that match the Spark execution engine.

Phase 4: Code Generation
The final phase of query optimization involves generating efficient Java bytecode to
run on each machine. Because Spark SQL can operate datasets loaded in memory
datasets, Spark can use a state-of-the-art compiler technology for code generation to
speed up execution. In other words, it acts as a compiler. Project Tungsten, which
facilitates whole-stage code-generation, plays a role here.42

Whole-Stage Code-Generation .    At a high-level, this aspect of physical planning in the
query’s journey is really the second generation of Project Tungsten43. Introduced in
Spark 2.0, it employs the latest compiler generation techniques to generate the
compact-code RDD code for final execution. “Built upon ideas from modern compil‐
ers and MPP databases and applied to data processing queries, it emits optimized
bytecode in the last phase by collapsing the entire query into a single function, elimi‐
nating virtual function calls and leveraging CPU registers for intermediate data.”

As a result of this streamlined strategy called “whole-stage code generation,” we sig‐
nificantly improve CPU efficiency and improve performance.44

Note: We have talked at a conceptual level the workings of the Spark SQL engine,
with its two principal components: Catalyst Optimizer and Project Tungsten. The
internal technical workings are beyond the scope of this book; however, for the curi‐
ous, we encourage you to check out the references for in-depth technical discussions.

Summary
In this chapter, we covered a short history of structure in Spark—its merits, justifica‐
tion, and simplification in Spark 2.x.

Through illustrative common data operations and code examples, we demonstrated
that high-level DataFrames and Datasets APIs are far more expressive and intuitive
than low-level RDDs APIs. Designed to make large data sets processing easier, high-
level structured APIs provide domain specific operators for common data operations.
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We shared when to use RDDs, DataFrames, and Datasets, depending on your use
case scenarios.

And finally, we explored under the hood how Spark SQL engine’s components—Cat‐
alyst Optimizer and Project Tungsten—support structured high-level APIs and DSL
operators: no matter what Spark’s supported language you use, a Spark query under‐
goes the same journey, from logical and physical plan construction to final compact
code generation.

This chapter’s concepts and code examples have laid the context for the next two
chapters, in which we will further show the seamless interoperability between Data‐
Frames, Datasets, and Spark SQL.
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